Realization of a tunable fiber-based double cavity system

Tunable cavities have proven to be highly attractive systems in cavity quantum electrodynamics thanks to their performance and flexibility. The possibility to form a cavity around any emitter while simultaneously spectrally matching the chosen transitions makes these cavities an important tool in ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-12, Vol.102 (23), p.1, Article 235306
Hauptverfasser: Herzog, T., Böhrkircher, S., Both, S., Fischer, M., Sittig, R., Jetter, M., Portalupi, S. L., Weiss, T., Michler, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 1
container_title Physical review. B
container_volume 102
creator Herzog, T.
Böhrkircher, S.
Both, S.
Fischer, M.
Sittig, R.
Jetter, M.
Portalupi, S. L.
Weiss, T.
Michler, P.
description Tunable cavities have proven to be highly attractive systems in cavity quantum electrodynamics thanks to their performance and flexibility. The possibility to form a cavity around any emitter while simultaneously spectrally matching the chosen transitions makes these cavities an important tool in photonic quantum technology. In this paper, we report on the experimental realization and theoretical description of a fiber-based resonator with two spatially and spectrally distinct cavity modes. The careful design of the structures was performed via finite-element simulations. Thanks to the intrinsic tunability of the system, one mode can be brought in resonance with the second one, forming a supermode resulting in a hybridized two-mode pattern in the emission spectrum. For its realization, we combine a monolithic bottom cavity, formed by two distributed Bragg reflectors, with a top movable fiber mirror forming an externally tunable cavity mode. When tuning the top cavity in resonance with the monolithic bottom one, the cavity modes exhibit a pronounced anticrossing behavior typical for mode hybridization. Differently from a standard open cavity, when embedding single emitters-in this case, InGaAs quantum dots-in the structure, the Purcell factor is not uniform for each wavelength. Furthermore, we find a strong influence of the simulated Purcell factor, as well as of the measured light extraction, depending on the placement of the emitter in the top or in the bottom cavity. The discussed two-mode cavity could be employed for simultaneously Purcell-enhancing multiple transitions of an emitter while preserving the single-photon nature of the emitters inside the device.
doi_str_mv 10.1103/PhysRevB.102.235306
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481215889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481215889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-e3feca0a4da7b5ad815d2fa4bc01dbfb55592a05e56f6909a98742ecdc6bcd5f3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRsNT-Ai8Bz6nv7mY32aMWv6CgFD0v735hSprU3aQQf70pVU8zDMMMPIRcU1hSCvz27XNMG3-4X1JgS8YFB3lGZqyQKldKqvN_L-CSLFLaAgCVoEpQM6I2Hpv6G_u6a7MuZJj1Q4um8VmojY-5weRd5rrhGFk81P2YpTH1fndFLgI2yS9-dU4-Hh_eV8_5-vXpZXW3zi0ryz73PHiLgIXD0gh0FRWOBSyMBepMMEIIxRCEFzJIBQpVVRbMW2elsU4EPic3p9197L4Gn3q97YbYTpeaFRVlVFSVmlr81LKxSyn6oPex3mEcNQV9xKT_ME0B0ydM_AeSp11F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481215889</pqid></control><display><type>article</type><title>Realization of a tunable fiber-based double cavity system</title><source>American Physical Society Journals</source><creator>Herzog, T. ; Böhrkircher, S. ; Both, S. ; Fischer, M. ; Sittig, R. ; Jetter, M. ; Portalupi, S. L. ; Weiss, T. ; Michler, P.</creator><creatorcontrib>Herzog, T. ; Böhrkircher, S. ; Both, S. ; Fischer, M. ; Sittig, R. ; Jetter, M. ; Portalupi, S. L. ; Weiss, T. ; Michler, P.</creatorcontrib><description>Tunable cavities have proven to be highly attractive systems in cavity quantum electrodynamics thanks to their performance and flexibility. The possibility to form a cavity around any emitter while simultaneously spectrally matching the chosen transitions makes these cavities an important tool in photonic quantum technology. In this paper, we report on the experimental realization and theoretical description of a fiber-based resonator with two spatially and spectrally distinct cavity modes. The careful design of the structures was performed via finite-element simulations. Thanks to the intrinsic tunability of the system, one mode can be brought in resonance with the second one, forming a supermode resulting in a hybridized two-mode pattern in the emission spectrum. For its realization, we combine a monolithic bottom cavity, formed by two distributed Bragg reflectors, with a top movable fiber mirror forming an externally tunable cavity mode. When tuning the top cavity in resonance with the monolithic bottom one, the cavity modes exhibit a pronounced anticrossing behavior typical for mode hybridization. Differently from a standard open cavity, when embedding single emitters-in this case, InGaAs quantum dots-in the structure, the Purcell factor is not uniform for each wavelength. Furthermore, we find a strong influence of the simulated Purcell factor, as well as of the measured light extraction, depending on the placement of the emitter in the top or in the bottom cavity. The discussed two-mode cavity could be employed for simultaneously Purcell-enhancing multiple transitions of an emitter while preserving the single-photon nature of the emitters inside the device.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.235306</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Bragg reflectors ; Cavity resonators ; Emitters ; Quantum dots ; Quantum electrodynamics ; Resonance ; Spectral emittance</subject><ispartof>Physical review. B, 2020-12, Vol.102 (23), p.1, Article 235306</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c277t-e3feca0a4da7b5ad815d2fa4bc01dbfb55592a05e56f6909a98742ecdc6bcd5f3</citedby><cites>FETCH-LOGICAL-c277t-e3feca0a4da7b5ad815d2fa4bc01dbfb55592a05e56f6909a98742ecdc6bcd5f3</cites><orcidid>0000-0002-2841-3013 ; 0000-0002-2949-2462 ; 0000-0002-2050-6952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2865,2866,27907,27908</link.rule.ids></links><search><creatorcontrib>Herzog, T.</creatorcontrib><creatorcontrib>Böhrkircher, S.</creatorcontrib><creatorcontrib>Both, S.</creatorcontrib><creatorcontrib>Fischer, M.</creatorcontrib><creatorcontrib>Sittig, R.</creatorcontrib><creatorcontrib>Jetter, M.</creatorcontrib><creatorcontrib>Portalupi, S. L.</creatorcontrib><creatorcontrib>Weiss, T.</creatorcontrib><creatorcontrib>Michler, P.</creatorcontrib><title>Realization of a tunable fiber-based double cavity system</title><title>Physical review. B</title><description>Tunable cavities have proven to be highly attractive systems in cavity quantum electrodynamics thanks to their performance and flexibility. The possibility to form a cavity around any emitter while simultaneously spectrally matching the chosen transitions makes these cavities an important tool in photonic quantum technology. In this paper, we report on the experimental realization and theoretical description of a fiber-based resonator with two spatially and spectrally distinct cavity modes. The careful design of the structures was performed via finite-element simulations. Thanks to the intrinsic tunability of the system, one mode can be brought in resonance with the second one, forming a supermode resulting in a hybridized two-mode pattern in the emission spectrum. For its realization, we combine a monolithic bottom cavity, formed by two distributed Bragg reflectors, with a top movable fiber mirror forming an externally tunable cavity mode. When tuning the top cavity in resonance with the monolithic bottom one, the cavity modes exhibit a pronounced anticrossing behavior typical for mode hybridization. Differently from a standard open cavity, when embedding single emitters-in this case, InGaAs quantum dots-in the structure, the Purcell factor is not uniform for each wavelength. Furthermore, we find a strong influence of the simulated Purcell factor, as well as of the measured light extraction, depending on the placement of the emitter in the top or in the bottom cavity. The discussed two-mode cavity could be employed for simultaneously Purcell-enhancing multiple transitions of an emitter while preserving the single-photon nature of the emitters inside the device.</description><subject>Bragg reflectors</subject><subject>Cavity resonators</subject><subject>Emitters</subject><subject>Quantum dots</subject><subject>Quantum electrodynamics</subject><subject>Resonance</subject><subject>Spectral emittance</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AYhBdRsNT-Ai8Bz6nv7mY32aMWv6CgFD0v735hSprU3aQQf70pVU8zDMMMPIRcU1hSCvz27XNMG3-4X1JgS8YFB3lGZqyQKldKqvN_L-CSLFLaAgCVoEpQM6I2Hpv6G_u6a7MuZJj1Q4um8VmojY-5weRd5rrhGFk81P2YpTH1fndFLgI2yS9-dU4-Hh_eV8_5-vXpZXW3zi0ryz73PHiLgIXD0gh0FRWOBSyMBepMMEIIxRCEFzJIBQpVVRbMW2elsU4EPic3p9197L4Gn3q97YbYTpeaFRVlVFSVmlr81LKxSyn6oPex3mEcNQV9xKT_ME0B0ydM_AeSp11F</recordid><startdate>20201230</startdate><enddate>20201230</enddate><creator>Herzog, T.</creator><creator>Böhrkircher, S.</creator><creator>Both, S.</creator><creator>Fischer, M.</creator><creator>Sittig, R.</creator><creator>Jetter, M.</creator><creator>Portalupi, S. L.</creator><creator>Weiss, T.</creator><creator>Michler, P.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2841-3013</orcidid><orcidid>https://orcid.org/0000-0002-2949-2462</orcidid><orcidid>https://orcid.org/0000-0002-2050-6952</orcidid></search><sort><creationdate>20201230</creationdate><title>Realization of a tunable fiber-based double cavity system</title><author>Herzog, T. ; Böhrkircher, S. ; Both, S. ; Fischer, M. ; Sittig, R. ; Jetter, M. ; Portalupi, S. L. ; Weiss, T. ; Michler, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-e3feca0a4da7b5ad815d2fa4bc01dbfb55592a05e56f6909a98742ecdc6bcd5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bragg reflectors</topic><topic>Cavity resonators</topic><topic>Emitters</topic><topic>Quantum dots</topic><topic>Quantum electrodynamics</topic><topic>Resonance</topic><topic>Spectral emittance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herzog, T.</creatorcontrib><creatorcontrib>Böhrkircher, S.</creatorcontrib><creatorcontrib>Both, S.</creatorcontrib><creatorcontrib>Fischer, M.</creatorcontrib><creatorcontrib>Sittig, R.</creatorcontrib><creatorcontrib>Jetter, M.</creatorcontrib><creatorcontrib>Portalupi, S. L.</creatorcontrib><creatorcontrib>Weiss, T.</creatorcontrib><creatorcontrib>Michler, P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herzog, T.</au><au>Böhrkircher, S.</au><au>Both, S.</au><au>Fischer, M.</au><au>Sittig, R.</au><au>Jetter, M.</au><au>Portalupi, S. L.</au><au>Weiss, T.</au><au>Michler, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Realization of a tunable fiber-based double cavity system</atitle><jtitle>Physical review. B</jtitle><date>2020-12-30</date><risdate>2020</risdate><volume>102</volume><issue>23</issue><spage>1</spage><pages>1-</pages><artnum>235306</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Tunable cavities have proven to be highly attractive systems in cavity quantum electrodynamics thanks to their performance and flexibility. The possibility to form a cavity around any emitter while simultaneously spectrally matching the chosen transitions makes these cavities an important tool in photonic quantum technology. In this paper, we report on the experimental realization and theoretical description of a fiber-based resonator with two spatially and spectrally distinct cavity modes. The careful design of the structures was performed via finite-element simulations. Thanks to the intrinsic tunability of the system, one mode can be brought in resonance with the second one, forming a supermode resulting in a hybridized two-mode pattern in the emission spectrum. For its realization, we combine a monolithic bottom cavity, formed by two distributed Bragg reflectors, with a top movable fiber mirror forming an externally tunable cavity mode. When tuning the top cavity in resonance with the monolithic bottom one, the cavity modes exhibit a pronounced anticrossing behavior typical for mode hybridization. Differently from a standard open cavity, when embedding single emitters-in this case, InGaAs quantum dots-in the structure, the Purcell factor is not uniform for each wavelength. Furthermore, we find a strong influence of the simulated Purcell factor, as well as of the measured light extraction, depending on the placement of the emitter in the top or in the bottom cavity. The discussed two-mode cavity could be employed for simultaneously Purcell-enhancing multiple transitions of an emitter while preserving the single-photon nature of the emitters inside the device.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.235306</doi><orcidid>https://orcid.org/0000-0002-2841-3013</orcidid><orcidid>https://orcid.org/0000-0002-2949-2462</orcidid><orcidid>https://orcid.org/0000-0002-2050-6952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-12, Vol.102 (23), p.1, Article 235306
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2481215889
source American Physical Society Journals
subjects Bragg reflectors
Cavity resonators
Emitters
Quantum dots
Quantum electrodynamics
Resonance
Spectral emittance
title Realization of a tunable fiber-based double cavity system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A28%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Realization%20of%20a%20tunable%20fiber-based%20double%20cavity%20system&rft.jtitle=Physical%20review.%20B&rft.au=Herzog,%20T.&rft.date=2020-12-30&rft.volume=102&rft.issue=23&rft.spage=1&rft.pages=1-&rft.artnum=235306&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.235306&rft_dat=%3Cproquest_cross%3E2481215889%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481215889&rft_id=info:pmid/&rfr_iscdi=true