Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group

We present a consistent fusion of functional renormalization group and mean-field theory which explicitly introduces a bosonic field via a Hubbard-Stratonovich transformation at the critical scale, at which the order sets in. We show that a minimal truncation of the flow equations, that neglects ord...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-12, Vol.102 (23), p.1, Article 235160
1. Verfasser: Bonetti, Pietro M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 1
container_title Physical review. B
container_volume 102
creator Bonetti, Pietro M.
description We present a consistent fusion of functional renormalization group and mean-field theory which explicitly introduces a bosonic field via a Hubbard-Stratonovich transformation at the critical scale, at which the order sets in. We show that a minimal truncation of the flow equations, that neglects order-parameter fluctuations, is integrable and fulfills fundamental constraints as the Goldstone theorem and the Ward identity connected with the broken global symmetry. To introduce the bosonic field, we present a technique to factorize the most singular part of the vertex, even when the full dependence on all its arguments is retained. We test our method on the two-dimensional attractive Hubbard model at half-filling and calculate the superfluid gap as well as the Yukawa couplings and residual two-fermion interactions in the ordered phase as functions of fermionic Matsubara frequencies. Furthermore, we analyze the gap and the condensate fraction for weak and moderate couplings and compare our results with previous functional renormalization group studies, and with quantum Monte Carlo data. Our formalism constitutes a convenient starting point for the inclusion of order-parameter fluctuations by keeping a full, nonsimplified, dependence on fermionic momenta and/or frequencies.
doi_str_mv 10.1103/PhysRevB.102.235160
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481214507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481214507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-7c997bb423f59e5f2caa68ebd8e65919ecca385f2f328e2f38893955000c91f93</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEElXpF7CxxDrFj7zMrlQUkCqBELCNHGfcuEriYCdA-Ai-GZdSNh7P1ZmrmRsE5wTPCcHs8rEa3RO8X88JpnPKYpLgo2BCo4SHnCf8-P8f49Ng5twWY-wZnmI-Cb4XUoJzut2gvgJkbAkWStRVwvlOIWmshVr0XluBbTRyo-uhcVfoFWwPn6gwzrT6S_TatEi0JWpAtKHSUJc7R2NH9KH7Sre__mpo5Y4UNbLQGtuI-jC7sWbozoITJWoHs786DV5WN8_Lu3D9cHu_XKxDySjtw1RynhZFRJmKOcSKSiGSDIoygyTmhIOUgmVeV4xm4N8s44zHsb9ccqI4mwYXe9_OmrcBXJ9vzWD9Wi6nUUYoiWKceortKWmNcxZU3lndCDvmBOe77PND9l6g-T579gNrKHyR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481214507</pqid></control><display><type>article</type><title>Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Bonetti, Pietro M.</creator><creatorcontrib>Bonetti, Pietro M.</creatorcontrib><description>We present a consistent fusion of functional renormalization group and mean-field theory which explicitly introduces a bosonic field via a Hubbard-Stratonovich transformation at the critical scale, at which the order sets in. We show that a minimal truncation of the flow equations, that neglects order-parameter fluctuations, is integrable and fulfills fundamental constraints as the Goldstone theorem and the Ward identity connected with the broken global symmetry. To introduce the bosonic field, we present a technique to factorize the most singular part of the vertex, even when the full dependence on all its arguments is retained. We test our method on the two-dimensional attractive Hubbard model at half-filling and calculate the superfluid gap as well as the Yukawa couplings and residual two-fermion interactions in the ordered phase as functions of fermionic Matsubara frequencies. Furthermore, we analyze the gap and the condensate fraction for weak and moderate couplings and compare our results with previous functional renormalization group studies, and with quantum Monte Carlo data. Our formalism constitutes a convenient starting point for the inclusion of order-parameter fluctuations by keeping a full, nonsimplified, dependence on fermionic momenta and/or frequencies.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.102.235160</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Boson fields ; Couplings ; Dependence ; Fermions ; Flow equations ; Fluids ; Group theory ; Mean field theory ; Order parameters ; Superfluidity ; Two dimensional models</subject><ispartof>Physical review. B, 2020-12, Vol.102 (23), p.1, Article 235160</ispartof><rights>Copyright American Physical Society Dec 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-7c997bb423f59e5f2caa68ebd8e65919ecca385f2f328e2f38893955000c91f93</citedby><cites>FETCH-LOGICAL-c322t-7c997bb423f59e5f2caa68ebd8e65919ecca385f2f328e2f38893955000c91f93</cites><orcidid>0000-0002-7465-7043</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Bonetti, Pietro M.</creatorcontrib><title>Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group</title><title>Physical review. B</title><description>We present a consistent fusion of functional renormalization group and mean-field theory which explicitly introduces a bosonic field via a Hubbard-Stratonovich transformation at the critical scale, at which the order sets in. We show that a minimal truncation of the flow equations, that neglects order-parameter fluctuations, is integrable and fulfills fundamental constraints as the Goldstone theorem and the Ward identity connected with the broken global symmetry. To introduce the bosonic field, we present a technique to factorize the most singular part of the vertex, even when the full dependence on all its arguments is retained. We test our method on the two-dimensional attractive Hubbard model at half-filling and calculate the superfluid gap as well as the Yukawa couplings and residual two-fermion interactions in the ordered phase as functions of fermionic Matsubara frequencies. Furthermore, we analyze the gap and the condensate fraction for weak and moderate couplings and compare our results with previous functional renormalization group studies, and with quantum Monte Carlo data. Our formalism constitutes a convenient starting point for the inclusion of order-parameter fluctuations by keeping a full, nonsimplified, dependence on fermionic momenta and/or frequencies.</description><subject>Boson fields</subject><subject>Couplings</subject><subject>Dependence</subject><subject>Fermions</subject><subject>Flow equations</subject><subject>Fluids</subject><subject>Group theory</subject><subject>Mean field theory</subject><subject>Order parameters</subject><subject>Superfluidity</subject><subject>Two dimensional models</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRSMEElXpF7CxxDrFj7zMrlQUkCqBELCNHGfcuEriYCdA-Ai-GZdSNh7P1ZmrmRsE5wTPCcHs8rEa3RO8X88JpnPKYpLgo2BCo4SHnCf8-P8f49Ng5twWY-wZnmI-Cb4XUoJzut2gvgJkbAkWStRVwvlOIWmshVr0XluBbTRyo-uhcVfoFWwPn6gwzrT6S_TatEi0JWpAtKHSUJc7R2NH9KH7Sre__mpo5Y4UNbLQGtuI-jC7sWbozoITJWoHs786DV5WN8_Lu3D9cHu_XKxDySjtw1RynhZFRJmKOcSKSiGSDIoygyTmhIOUgmVeV4xm4N8s44zHsb9ccqI4mwYXe9_OmrcBXJ9vzWD9Wi6nUUYoiWKceortKWmNcxZU3lndCDvmBOe77PND9l6g-T579gNrKHyR</recordid><startdate>20201229</startdate><enddate>20201229</enddate><creator>Bonetti, Pietro M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7465-7043</orcidid></search><sort><creationdate>20201229</creationdate><title>Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group</title><author>Bonetti, Pietro M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-7c997bb423f59e5f2caa68ebd8e65919ecca385f2f328e2f38893955000c91f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boson fields</topic><topic>Couplings</topic><topic>Dependence</topic><topic>Fermions</topic><topic>Flow equations</topic><topic>Fluids</topic><topic>Group theory</topic><topic>Mean field theory</topic><topic>Order parameters</topic><topic>Superfluidity</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonetti, Pietro M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonetti, Pietro M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group</atitle><jtitle>Physical review. B</jtitle><date>2020-12-29</date><risdate>2020</risdate><volume>102</volume><issue>23</issue><spage>1</spage><pages>1-</pages><artnum>235160</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We present a consistent fusion of functional renormalization group and mean-field theory which explicitly introduces a bosonic field via a Hubbard-Stratonovich transformation at the critical scale, at which the order sets in. We show that a minimal truncation of the flow equations, that neglects order-parameter fluctuations, is integrable and fulfills fundamental constraints as the Goldstone theorem and the Ward identity connected with the broken global symmetry. To introduce the bosonic field, we present a technique to factorize the most singular part of the vertex, even when the full dependence on all its arguments is retained. We test our method on the two-dimensional attractive Hubbard model at half-filling and calculate the superfluid gap as well as the Yukawa couplings and residual two-fermion interactions in the ordered phase as functions of fermionic Matsubara frequencies. Furthermore, we analyze the gap and the condensate fraction for weak and moderate couplings and compare our results with previous functional renormalization group studies, and with quantum Monte Carlo data. Our formalism constitutes a convenient starting point for the inclusion of order-parameter fluctuations by keeping a full, nonsimplified, dependence on fermionic momenta and/or frequencies.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.102.235160</doi><orcidid>https://orcid.org/0000-0002-7465-7043</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2020-12, Vol.102 (23), p.1, Article 235160
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_journals_2481214507
source APS: American Physical Society E-Journals (Physics)
subjects Boson fields
Couplings
Dependence
Fermions
Flow equations
Fluids
Group theory
Mean field theory
Order parameters
Superfluidity
Two dimensional models
title Accessing the ordered phase of correlated Fermi systems: Vertex bosonization and mean-field theory within the functional renormalization group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A09%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accessing%20the%20ordered%20phase%20of%20correlated%20Fermi%20systems:%20Vertex%20bosonization%20and%20mean-field%20theory%20within%20the%20functional%20renormalization%20group&rft.jtitle=Physical%20review.%20B&rft.au=Bonetti,%20Pietro%20M.&rft.date=2020-12-29&rft.volume=102&rft.issue=23&rft.spage=1&rft.pages=1-&rft.artnum=235160&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.102.235160&rft_dat=%3Cproquest_cross%3E2481214507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481214507&rft_id=info:pmid/&rfr_iscdi=true