Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge‐Trap Layered Electronics

The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-01, Vol.31 (5), p.n/a, Article 2005182
Hauptverfasser: Gao, Caifang, Lee, Mu‐Pai, Li, Mengjiao, Lee, Ko‐Chun, Yang, Feng‐Shou, Lin, Che‐Yi, Watanabe, Kenji, Taniguchi, Takashi, Chiu, Po‐Wen, Lien, Chen‐Hsin, Wu, Wen‐Wei, Lin, Shu‐Ping, Li, Wenwu, Lin, Yen‐Fu, Chu, Junhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced functional materials
container_volume 31
creator Gao, Caifang
Lee, Mu‐Pai
Li, Mengjiao
Lee, Ko‐Chun
Yang, Feng‐Shou
Lin, Che‐Yi
Watanabe, Kenji
Taniguchi, Takashi
Chiu, Po‐Wen
Lien, Chen‐Hsin
Wu, Wen‐Wei
Lin, Shu‐Ping
Li, Wenwu
Lin, Yen‐Fu
Chu, Junhao
description The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate‐dependent persistent photocurrent is observed, arising from the modulation of substrate‐trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug‐related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity. In this study, controlling the polarity of gate field, positive/negative correlations of the An/A1 index arising from the substrate‐trapping events, reflected the weight change of neuroplasticity, are realized under the same stimulations for the emulation of drug‐dosage‐related addition/relief behaviors in brain (where A1 and An represent the postsynaptic responses triggered by the 1st and nth input spikes, respectively).
doi_str_mv 10.1002/adfm.202005182
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2481022207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481022207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-7dd2f0d2f8bd110b93794a7f005eee674af9983e5a1cbb679aa504bb80f668463</originalsourceid><addsrcrecordid>eNqNkEFLwzAUx4soOKdXzwWPsvmSdk161G5TYdPLBMFDSdOXmdE1M2mR3fwIfkY_iZkb86iBkMD7_V5e_kFwTqBPAOiVKNWyT4ECDAinB0GHJCTpRUD54f5Ono-DE-cWAISxKO4EL1O91DIc2nYeDo0Tcwynpmwr0WhTh8rY8AFba1aVcI2WulmHN8JhGfpi9irsHL8-PmdWrMKJWKP1hVGFsrGm1tKdBkdKVA7Pdmc3eBqPZtldb_J4e59dT3oyIoz2WFlSBX7zoiQEijRiaSyY8v9AxITFQqUpj3AgiCyKhKVCDCAuCg4qSXicRN3gYtt3Zc1bi67JF6a1tX8ypzEnQCkF5qn-lpLWOGdR5Surl8KucwL5JsB8E2C-D9ALl1vhHQujnNRYS9xL4CnOSZzAZhFP8__TmW5-As5MWzdeTXeqrnD9x1j59XA8_R3yG6ztliI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481022207</pqid></control><display><type>article</type><title>Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge‐Trap Layered Electronics</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Gao, Caifang ; Lee, Mu‐Pai ; Li, Mengjiao ; Lee, Ko‐Chun ; Yang, Feng‐Shou ; Lin, Che‐Yi ; Watanabe, Kenji ; Taniguchi, Takashi ; Chiu, Po‐Wen ; Lien, Chen‐Hsin ; Wu, Wen‐Wei ; Lin, Shu‐Ping ; Li, Wenwu ; Lin, Yen‐Fu ; Chu, Junhao</creator><creatorcontrib>Gao, Caifang ; Lee, Mu‐Pai ; Li, Mengjiao ; Lee, Ko‐Chun ; Yang, Feng‐Shou ; Lin, Che‐Yi ; Watanabe, Kenji ; Taniguchi, Takashi ; Chiu, Po‐Wen ; Lien, Chen‐Hsin ; Wu, Wen‐Wei ; Lin, Shu‐Ping ; Li, Wenwu ; Lin, Yen‐Fu ; Chu, Junhao</creatorcontrib><description>The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate‐dependent persistent photocurrent is observed, arising from the modulation of substrate‐trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug‐related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity. In this study, controlling the polarity of gate field, positive/negative correlations of the An/A1 index arising from the substrate‐trapping events, reflected the weight change of neuroplasticity, are realized under the same stimulations for the emulation of drug‐dosage‐related addition/relief behaviors in brain (where A1 and An represent the postsynaptic responses triggered by the 1st and nth input spikes, respectively).</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202005182</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Brain ; charge trapping ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Dosage ; Drug addiction ; Drug dosages ; gate‐dependent modulations ; Hafnium compounds ; layered HfS2 synaptic device ; Materials Science ; Materials Science, Multidisciplinary ; Modulation ; Nanoscience &amp; Nanotechnology ; neuroplasticity ; Photoelectric effect ; Photoelectric emission ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Silicon dioxide ; Substrates ; Synapses ; Technology ; Trapping</subject><ispartof>Advanced functional materials, 2021-01, Vol.31 (5), p.n/a, Article 2005182</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000588146000001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3172-7dd2f0d2f8bd110b93794a7f005eee674af9983e5a1cbb679aa504bb80f668463</citedby><cites>FETCH-LOGICAL-c3172-7dd2f0d2f8bd110b93794a7f005eee674af9983e5a1cbb679aa504bb80f668463</cites><orcidid>0000-0002-1545-9143 ; 0000-0002-9307-1566 ; 0000-0003-3701-8119 ; 0000-0001-5169-0361 ; 0000-0003-4909-0310</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202005182$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202005182$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,39263,45579,45580</link.rule.ids></links><search><creatorcontrib>Gao, Caifang</creatorcontrib><creatorcontrib>Lee, Mu‐Pai</creatorcontrib><creatorcontrib>Li, Mengjiao</creatorcontrib><creatorcontrib>Lee, Ko‐Chun</creatorcontrib><creatorcontrib>Yang, Feng‐Shou</creatorcontrib><creatorcontrib>Lin, Che‐Yi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Chiu, Po‐Wen</creatorcontrib><creatorcontrib>Lien, Chen‐Hsin</creatorcontrib><creatorcontrib>Wu, Wen‐Wei</creatorcontrib><creatorcontrib>Lin, Shu‐Ping</creatorcontrib><creatorcontrib>Li, Wenwu</creatorcontrib><creatorcontrib>Lin, Yen‐Fu</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><title>Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge‐Trap Layered Electronics</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate‐dependent persistent photocurrent is observed, arising from the modulation of substrate‐trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug‐related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity. In this study, controlling the polarity of gate field, positive/negative correlations of the An/A1 index arising from the substrate‐trapping events, reflected the weight change of neuroplasticity, are realized under the same stimulations for the emulation of drug‐dosage‐related addition/relief behaviors in brain (where A1 and An represent the postsynaptic responses triggered by the 1st and nth input spikes, respectively).</description><subject>Brain</subject><subject>charge trapping</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Dosage</subject><subject>Drug addiction</subject><subject>Drug dosages</subject><subject>gate‐dependent modulations</subject><subject>Hafnium compounds</subject><subject>layered HfS2 synaptic device</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Modulation</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>neuroplasticity</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Silicon dioxide</subject><subject>Substrates</subject><subject>Synapses</subject><subject>Technology</subject><subject>Trapping</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkEFLwzAUx4soOKdXzwWPsvmSdk161G5TYdPLBMFDSdOXmdE1M2mR3fwIfkY_iZkb86iBkMD7_V5e_kFwTqBPAOiVKNWyT4ECDAinB0GHJCTpRUD54f5Ono-DE-cWAISxKO4EL1O91DIc2nYeDo0Tcwynpmwr0WhTh8rY8AFba1aVcI2WulmHN8JhGfpi9irsHL8-PmdWrMKJWKP1hVGFsrGm1tKdBkdKVA7Pdmc3eBqPZtldb_J4e59dT3oyIoz2WFlSBX7zoiQEijRiaSyY8v9AxITFQqUpj3AgiCyKhKVCDCAuCg4qSXicRN3gYtt3Zc1bi67JF6a1tX8ypzEnQCkF5qn-lpLWOGdR5Surl8KucwL5JsB8E2C-D9ALl1vhHQujnNRYS9xL4CnOSZzAZhFP8__TmW5-As5MWzdeTXeqrnD9x1j59XA8_R3yG6ztliI</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Gao, Caifang</creator><creator>Lee, Mu‐Pai</creator><creator>Li, Mengjiao</creator><creator>Lee, Ko‐Chun</creator><creator>Yang, Feng‐Shou</creator><creator>Lin, Che‐Yi</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Chiu, Po‐Wen</creator><creator>Lien, Chen‐Hsin</creator><creator>Wu, Wen‐Wei</creator><creator>Lin, Shu‐Ping</creator><creator>Li, Wenwu</creator><creator>Lin, Yen‐Fu</creator><creator>Chu, Junhao</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1545-9143</orcidid><orcidid>https://orcid.org/0000-0002-9307-1566</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-5169-0361</orcidid><orcidid>https://orcid.org/0000-0003-4909-0310</orcidid></search><sort><creationdate>20210101</creationdate><title>Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge‐Trap Layered Electronics</title><author>Gao, Caifang ; Lee, Mu‐Pai ; Li, Mengjiao ; Lee, Ko‐Chun ; Yang, Feng‐Shou ; Lin, Che‐Yi ; Watanabe, Kenji ; Taniguchi, Takashi ; Chiu, Po‐Wen ; Lien, Chen‐Hsin ; Wu, Wen‐Wei ; Lin, Shu‐Ping ; Li, Wenwu ; Lin, Yen‐Fu ; Chu, Junhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-7dd2f0d2f8bd110b93794a7f005eee674af9983e5a1cbb679aa504bb80f668463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain</topic><topic>charge trapping</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Dosage</topic><topic>Drug addiction</topic><topic>Drug dosages</topic><topic>gate‐dependent modulations</topic><topic>Hafnium compounds</topic><topic>layered HfS2 synaptic device</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Modulation</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>neuroplasticity</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Silicon dioxide</topic><topic>Substrates</topic><topic>Synapses</topic><topic>Technology</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Caifang</creatorcontrib><creatorcontrib>Lee, Mu‐Pai</creatorcontrib><creatorcontrib>Li, Mengjiao</creatorcontrib><creatorcontrib>Lee, Ko‐Chun</creatorcontrib><creatorcontrib>Yang, Feng‐Shou</creatorcontrib><creatorcontrib>Lin, Che‐Yi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Chiu, Po‐Wen</creatorcontrib><creatorcontrib>Lien, Chen‐Hsin</creatorcontrib><creatorcontrib>Wu, Wen‐Wei</creatorcontrib><creatorcontrib>Lin, Shu‐Ping</creatorcontrib><creatorcontrib>Li, Wenwu</creatorcontrib><creatorcontrib>Lin, Yen‐Fu</creatorcontrib><creatorcontrib>Chu, Junhao</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Caifang</au><au>Lee, Mu‐Pai</au><au>Li, Mengjiao</au><au>Lee, Ko‐Chun</au><au>Yang, Feng‐Shou</au><au>Lin, Che‐Yi</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Chiu, Po‐Wen</au><au>Lien, Chen‐Hsin</au><au>Wu, Wen‐Wei</au><au>Lin, Shu‐Ping</au><au>Li, Wenwu</au><au>Lin, Yen‐Fu</au><au>Chu, Junhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge‐Trap Layered Electronics</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><epage>n/a</epage><artnum>2005182</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The human brain is often likened to an incredibly complex and intricate computer, rather than electrical devices, consisting of billions of neuronal cells connected by synapses. Different brain circuits are responsible for coordinating and performing specific functions. The reward pathway of the synaptic plasticity in the brain is strongly related to the features of both drug addiction and relief. In the current study, a synaptic device based on layered hafnium disulfide (HfS2) is developed for the first time, to emulate the behavioral mechanisms of drug dosage modulation for neuroplasticity. A strong gate‐dependent persistent photocurrent is observed, arising from the modulation of substrate‐trapping events. By controlling the polarity of gate voltage, the basic functions of biological synapses are realized under a range of light spiking conditions. Furthermore, under the control of detrapping/trapping events at the HfS2/SiO2 interface, positive/negative correlations of the An/A1 index, which significantly reflected the weight change of synaptic plasticity, are realized under the same stimulation conditions for the emulation of the drug‐related addition/relief behaviors in the brain. The findings provide a new advance for mimicking human brain plasticity. In this study, controlling the polarity of gate field, positive/negative correlations of the An/A1 index arising from the substrate‐trapping events, reflected the weight change of neuroplasticity, are realized under the same stimulations for the emulation of drug‐dosage‐related addition/relief behaviors in brain (where A1 and An represent the postsynaptic responses triggered by the 1st and nth input spikes, respectively).</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202005182</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1545-9143</orcidid><orcidid>https://orcid.org/0000-0002-9307-1566</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0001-5169-0361</orcidid><orcidid>https://orcid.org/0000-0003-4909-0310</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-01, Vol.31 (5), p.n/a, Article 2005182
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2481022207
source Wiley Online Library - AutoHoldings Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Brain
charge trapping
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Dosage
Drug addiction
Drug dosages
gate‐dependent modulations
Hafnium compounds
layered HfS2 synaptic device
Materials Science
Materials Science, Multidisciplinary
Modulation
Nanoscience & Nanotechnology
neuroplasticity
Photoelectric effect
Photoelectric emission
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Science & Technology
Science & Technology - Other Topics
Silicon dioxide
Substrates
Synapses
Technology
Trapping
title Mimic Drug Dosage Modulation for Neuroplasticity Based on Charge‐Trap Layered Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T02%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mimic%20Drug%20Dosage%20Modulation%20for%20Neuroplasticity%20Based%20on%20Charge%E2%80%90Trap%20Layered%20Electronics&rft.jtitle=Advanced%20functional%20materials&rft.au=Gao,%20Caifang&rft.date=2021-01-01&rft.volume=31&rft.issue=5&rft.epage=n/a&rft.artnum=2005182&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202005182&rft_dat=%3Cproquest_webof%3E2481022207%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481022207&rft_id=info:pmid/&rfr_iscdi=true