Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells

Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-01, Vol.31 (5), p.n/a
Hauptverfasser: Wang, Fengyou, Zhang, Yuhong, Yang, Meifang, Han, Donglai, Yang, Lili, Fan, Lin, Sui, Yingrui, Sun, Yunfei, Liu, Xiaoyan, Meng, Xiangwei, Yang, Jinghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced functional materials
container_volume 31
creator Wang, Fengyou
Zhang, Yuhong
Yang, Meifang
Han, Donglai
Yang, Lili
Fan, Lin
Sui, Yingrui
Sun, Yunfei
Liu, Xiaoyan
Meng, Xiangwei
Yang, Jinghai
description Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field‐effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field‐effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built‐in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (>91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field‐effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications. Novel interface polarization induced field‐effect passivation based on amorphous transition metal oxide is developed for efficient and ambient‐air‐stable perovskite solar cells. Comprehensive insights into the interaction between the field‐effect passivation, interface polarities, and the performance of the device have been elucidated in detail.
doi_str_mv 10.1002/adfm.202008052
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481022160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481022160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3562-c6e94dc656080f2b6b1a3f1b97c0cd5bef1421367f659fd3b0ff40c12d0aae303</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEqWwMltCjAlnJ3GaseoHVCqiUkFisxz7DC5pUuy0qBs_gd_ILyFVURmZ7obneU_3BsElhYgCsBupzTJiwAB6kLKjoEM55WEMrHd82OnzaXDm_QKAZlmcdIJmUjXojFRIhnZVl0gmlV4r1GRssdTfn18jY1A1ZCa9txvZ2Loipnakr14tbmz1QhiNsmvSYlZZrNSWyEqTeSOLNmyGrt74N9sgmdeldGSAZenPgxMjS48Xv7MbPI1Hj4O7cPpwOxn0p6GKU85CxTFPtOIpbz8yrOAFlbGhRZ4pUDot0NCE0Zhnhqe50XEBxiSgKNMgJcYQd4Orfe7K1e9r9I1Y1GtXtScFS3oUGKN8R0V7Srnae4dGrJxdSrcVFMSuWbFrVhyabYV8L3zYErf_0KI_HN__uT_piH2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481022160</pqid></control><display><type>article</type><title>Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Fengyou ; Zhang, Yuhong ; Yang, Meifang ; Han, Donglai ; Yang, Lili ; Fan, Lin ; Sui, Yingrui ; Sun, Yunfei ; Liu, Xiaoyan ; Meng, Xiangwei ; Yang, Jinghai</creator><creatorcontrib>Wang, Fengyou ; Zhang, Yuhong ; Yang, Meifang ; Han, Donglai ; Yang, Lili ; Fan, Lin ; Sui, Yingrui ; Sun, Yunfei ; Liu, Xiaoyan ; Meng, Xiangwei ; Yang, Jinghai</creatorcontrib><description>Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field‐effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field‐effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built‐in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (&gt;91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field‐effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications. Novel interface polarization induced field‐effect passivation based on amorphous transition metal oxide is developed for efficient and ambient‐air‐stable perovskite solar cells. Comprehensive insights into the interaction between the field‐effect passivation, interface polarities, and the performance of the device have been elucidated in detail.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202008052</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Carrier transport ; Dipoles ; Efficiency ; Energy conversion efficiency ; field‐effect passivation ; Humidity ; humidity stability ; interfacial dipoles ; Interlayers ; Materials science ; Passivity ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; power conversion efficiency ; Solar cells ; Work functions</subject><ispartof>Advanced functional materials, 2021-01, Vol.31 (5), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3562-c6e94dc656080f2b6b1a3f1b97c0cd5bef1421367f659fd3b0ff40c12d0aae303</citedby><cites>FETCH-LOGICAL-c3562-c6e94dc656080f2b6b1a3f1b97c0cd5bef1421367f659fd3b0ff40c12d0aae303</cites><orcidid>0000-0003-0333-1684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202008052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202008052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Wang, Fengyou</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Yang, Meifang</creatorcontrib><creatorcontrib>Han, Donglai</creatorcontrib><creatorcontrib>Yang, Lili</creatorcontrib><creatorcontrib>Fan, Lin</creatorcontrib><creatorcontrib>Sui, Yingrui</creatorcontrib><creatorcontrib>Sun, Yunfei</creatorcontrib><creatorcontrib>Liu, Xiaoyan</creatorcontrib><creatorcontrib>Meng, Xiangwei</creatorcontrib><creatorcontrib>Yang, Jinghai</creatorcontrib><title>Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells</title><title>Advanced functional materials</title><description>Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field‐effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field‐effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built‐in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (&gt;91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field‐effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications. Novel interface polarization induced field‐effect passivation based on amorphous transition metal oxide is developed for efficient and ambient‐air‐stable perovskite solar cells. Comprehensive insights into the interaction between the field‐effect passivation, interface polarities, and the performance of the device have been elucidated in detail.</description><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Dipoles</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>field‐effect passivation</subject><subject>Humidity</subject><subject>humidity stability</subject><subject>interfacial dipoles</subject><subject>Interlayers</subject><subject>Materials science</subject><subject>Passivity</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>power conversion efficiency</subject><subject>Solar cells</subject><subject>Work functions</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEqWwMltCjAlnJ3GaseoHVCqiUkFisxz7DC5pUuy0qBs_gd_ILyFVURmZ7obneU_3BsElhYgCsBupzTJiwAB6kLKjoEM55WEMrHd82OnzaXDm_QKAZlmcdIJmUjXojFRIhnZVl0gmlV4r1GRssdTfn18jY1A1ZCa9txvZ2Loipnakr14tbmz1QhiNsmvSYlZZrNSWyEqTeSOLNmyGrt74N9sgmdeldGSAZenPgxMjS48Xv7MbPI1Hj4O7cPpwOxn0p6GKU85CxTFPtOIpbz8yrOAFlbGhRZ4pUDot0NCE0Zhnhqe50XEBxiSgKNMgJcYQd4Orfe7K1e9r9I1Y1GtXtScFS3oUGKN8R0V7Srnae4dGrJxdSrcVFMSuWbFrVhyabYV8L3zYErf_0KI_HN__uT_piH2w</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wang, Fengyou</creator><creator>Zhang, Yuhong</creator><creator>Yang, Meifang</creator><creator>Han, Donglai</creator><creator>Yang, Lili</creator><creator>Fan, Lin</creator><creator>Sui, Yingrui</creator><creator>Sun, Yunfei</creator><creator>Liu, Xiaoyan</creator><creator>Meng, Xiangwei</creator><creator>Yang, Jinghai</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0333-1684</orcidid></search><sort><creationdate>20210101</creationdate><title>Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells</title><author>Wang, Fengyou ; Zhang, Yuhong ; Yang, Meifang ; Han, Donglai ; Yang, Lili ; Fan, Lin ; Sui, Yingrui ; Sun, Yunfei ; Liu, Xiaoyan ; Meng, Xiangwei ; Yang, Jinghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3562-c6e94dc656080f2b6b1a3f1b97c0cd5bef1421367f659fd3b0ff40c12d0aae303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Dipoles</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>field‐effect passivation</topic><topic>Humidity</topic><topic>humidity stability</topic><topic>interfacial dipoles</topic><topic>Interlayers</topic><topic>Materials science</topic><topic>Passivity</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>power conversion efficiency</topic><topic>Solar cells</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fengyou</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Yang, Meifang</creatorcontrib><creatorcontrib>Han, Donglai</creatorcontrib><creatorcontrib>Yang, Lili</creatorcontrib><creatorcontrib>Fan, Lin</creatorcontrib><creatorcontrib>Sui, Yingrui</creatorcontrib><creatorcontrib>Sun, Yunfei</creatorcontrib><creatorcontrib>Liu, Xiaoyan</creatorcontrib><creatorcontrib>Meng, Xiangwei</creatorcontrib><creatorcontrib>Yang, Jinghai</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fengyou</au><au>Zhang, Yuhong</au><au>Yang, Meifang</au><au>Han, Donglai</au><au>Yang, Lili</au><au>Fan, Lin</au><au>Sui, Yingrui</au><au>Sun, Yunfei</au><au>Liu, Xiaoyan</au><au>Meng, Xiangwei</au><au>Yang, Jinghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field‐effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field‐effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built‐in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (&gt;91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field‐effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications. Novel interface polarization induced field‐effect passivation based on amorphous transition metal oxide is developed for efficient and ambient‐air‐stable perovskite solar cells. Comprehensive insights into the interaction between the field‐effect passivation, interface polarities, and the performance of the device have been elucidated in detail.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202008052</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0333-1684</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-01, Vol.31 (5), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2481022160
source Wiley Online Library Journals Frontfile Complete
subjects Carrier recombination
Carrier transport
Dipoles
Efficiency
Energy conversion efficiency
field‐effect passivation
Humidity
humidity stability
interfacial dipoles
Interlayers
Materials science
Passivity
perovskite solar cells
Perovskites
Photovoltaic cells
power conversion efficiency
Solar cells
Work functions
title Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20Dipole%20Induced%20Field%E2%80%90Effect%20Passivation%20for%20Achieving%2021.7%25%20Efficiency%20and%20Stable%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Fengyou&rft.date=2021-01-01&rft.volume=31&rft.issue=5&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202008052&rft_dat=%3Cproquest_cross%3E2481022160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481022160&rft_id=info:pmid/&rfr_iscdi=true