Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells
Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the ca...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-01, Vol.31 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Wang, Fengyou Zhang, Yuhong Yang, Meifang Han, Donglai Yang, Lili Fan, Lin Sui, Yingrui Sun, Yunfei Liu, Xiaoyan Meng, Xiangwei Yang, Jinghai |
description | Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field‐effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field‐effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built‐in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (>91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field‐effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications.
Novel interface polarization induced field‐effect passivation based on amorphous transition metal oxide is developed for efficient and ambient‐air‐stable perovskite solar cells. Comprehensive insights into the interaction between the field‐effect passivation, interface polarities, and the performance of the device have been elucidated in detail. |
doi_str_mv | 10.1002/adfm.202008052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2481022160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2481022160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3562-c6e94dc656080f2b6b1a3f1b97c0cd5bef1421367f659fd3b0ff40c12d0aae303</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEqWwMltCjAlnJ3GaseoHVCqiUkFisxz7DC5pUuy0qBs_gd_ILyFVURmZ7obneU_3BsElhYgCsBupzTJiwAB6kLKjoEM55WEMrHd82OnzaXDm_QKAZlmcdIJmUjXojFRIhnZVl0gmlV4r1GRssdTfn18jY1A1ZCa9txvZ2Loipnakr14tbmz1QhiNsmvSYlZZrNSWyEqTeSOLNmyGrt74N9sgmdeldGSAZenPgxMjS48Xv7MbPI1Hj4O7cPpwOxn0p6GKU85CxTFPtOIpbz8yrOAFlbGhRZ4pUDot0NCE0Zhnhqe50XEBxiSgKNMgJcYQd4Orfe7K1e9r9I1Y1GtXtScFS3oUGKN8R0V7Srnae4dGrJxdSrcVFMSuWbFrVhyabYV8L3zYErf_0KI_HN__uT_piH2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2481022160</pqid></control><display><type>article</type><title>Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Fengyou ; Zhang, Yuhong ; Yang, Meifang ; Han, Donglai ; Yang, Lili ; Fan, Lin ; Sui, Yingrui ; Sun, Yunfei ; Liu, Xiaoyan ; Meng, Xiangwei ; Yang, Jinghai</creator><creatorcontrib>Wang, Fengyou ; Zhang, Yuhong ; Yang, Meifang ; Han, Donglai ; Yang, Lili ; Fan, Lin ; Sui, Yingrui ; Sun, Yunfei ; Liu, Xiaoyan ; Meng, Xiangwei ; Yang, Jinghai</creatorcontrib><description>Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field‐effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field‐effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built‐in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (>91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field‐effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications.
Novel interface polarization induced field‐effect passivation based on amorphous transition metal oxide is developed for efficient and ambient‐air‐stable perovskite solar cells. Comprehensive insights into the interaction between the field‐effect passivation, interface polarities, and the performance of the device have been elucidated in detail.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202008052</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier recombination ; Carrier transport ; Dipoles ; Efficiency ; Energy conversion efficiency ; field‐effect passivation ; Humidity ; humidity stability ; interfacial dipoles ; Interlayers ; Materials science ; Passivity ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; power conversion efficiency ; Solar cells ; Work functions</subject><ispartof>Advanced functional materials, 2021-01, Vol.31 (5), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3562-c6e94dc656080f2b6b1a3f1b97c0cd5bef1421367f659fd3b0ff40c12d0aae303</citedby><cites>FETCH-LOGICAL-c3562-c6e94dc656080f2b6b1a3f1b97c0cd5bef1421367f659fd3b0ff40c12d0aae303</cites><orcidid>0000-0003-0333-1684</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202008052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202008052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Wang, Fengyou</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Yang, Meifang</creatorcontrib><creatorcontrib>Han, Donglai</creatorcontrib><creatorcontrib>Yang, Lili</creatorcontrib><creatorcontrib>Fan, Lin</creatorcontrib><creatorcontrib>Sui, Yingrui</creatorcontrib><creatorcontrib>Sun, Yunfei</creatorcontrib><creatorcontrib>Liu, Xiaoyan</creatorcontrib><creatorcontrib>Meng, Xiangwei</creatorcontrib><creatorcontrib>Yang, Jinghai</creatorcontrib><title>Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells</title><title>Advanced functional materials</title><description>Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field‐effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field‐effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built‐in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (>91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field‐effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications.
Novel interface polarization induced field‐effect passivation based on amorphous transition metal oxide is developed for efficient and ambient‐air‐stable perovskite solar cells. Comprehensive insights into the interaction between the field‐effect passivation, interface polarities, and the performance of the device have been elucidated in detail.</description><subject>Carrier recombination</subject><subject>Carrier transport</subject><subject>Dipoles</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>field‐effect passivation</subject><subject>Humidity</subject><subject>humidity stability</subject><subject>interfacial dipoles</subject><subject>Interlayers</subject><subject>Materials science</subject><subject>Passivity</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>power conversion efficiency</subject><subject>Solar cells</subject><subject>Work functions</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEqWwMltCjAlnJ3GaseoHVCqiUkFisxz7DC5pUuy0qBs_gd_ILyFVURmZ7obneU_3BsElhYgCsBupzTJiwAB6kLKjoEM55WEMrHd82OnzaXDm_QKAZlmcdIJmUjXojFRIhnZVl0gmlV4r1GRssdTfn18jY1A1ZCa9txvZ2Loipnakr14tbmz1QhiNsmvSYlZZrNSWyEqTeSOLNmyGrt74N9sgmdeldGSAZenPgxMjS48Xv7MbPI1Hj4O7cPpwOxn0p6GKU85CxTFPtOIpbz8yrOAFlbGhRZ4pUDot0NCE0Zhnhqe50XEBxiSgKNMgJcYQd4Orfe7K1e9r9I1Y1GtXtScFS3oUGKN8R0V7Srnae4dGrJxdSrcVFMSuWbFrVhyabYV8L3zYErf_0KI_HN__uT_piH2w</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Wang, Fengyou</creator><creator>Zhang, Yuhong</creator><creator>Yang, Meifang</creator><creator>Han, Donglai</creator><creator>Yang, Lili</creator><creator>Fan, Lin</creator><creator>Sui, Yingrui</creator><creator>Sun, Yunfei</creator><creator>Liu, Xiaoyan</creator><creator>Meng, Xiangwei</creator><creator>Yang, Jinghai</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0333-1684</orcidid></search><sort><creationdate>20210101</creationdate><title>Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells</title><author>Wang, Fengyou ; Zhang, Yuhong ; Yang, Meifang ; Han, Donglai ; Yang, Lili ; Fan, Lin ; Sui, Yingrui ; Sun, Yunfei ; Liu, Xiaoyan ; Meng, Xiangwei ; Yang, Jinghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3562-c6e94dc656080f2b6b1a3f1b97c0cd5bef1421367f659fd3b0ff40c12d0aae303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carrier recombination</topic><topic>Carrier transport</topic><topic>Dipoles</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>field‐effect passivation</topic><topic>Humidity</topic><topic>humidity stability</topic><topic>interfacial dipoles</topic><topic>Interlayers</topic><topic>Materials science</topic><topic>Passivity</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>power conversion efficiency</topic><topic>Solar cells</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fengyou</creatorcontrib><creatorcontrib>Zhang, Yuhong</creatorcontrib><creatorcontrib>Yang, Meifang</creatorcontrib><creatorcontrib>Han, Donglai</creatorcontrib><creatorcontrib>Yang, Lili</creatorcontrib><creatorcontrib>Fan, Lin</creatorcontrib><creatorcontrib>Sui, Yingrui</creatorcontrib><creatorcontrib>Sun, Yunfei</creatorcontrib><creatorcontrib>Liu, Xiaoyan</creatorcontrib><creatorcontrib>Meng, Xiangwei</creatorcontrib><creatorcontrib>Yang, Jinghai</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fengyou</au><au>Zhang, Yuhong</au><au>Yang, Meifang</au><au>Han, Donglai</au><au>Yang, Lili</au><au>Fan, Lin</au><au>Sui, Yingrui</au><au>Sun, Yunfei</au><au>Liu, Xiaoyan</au><au>Meng, Xiangwei</au><au>Yang, Jinghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells</atitle><jtitle>Advanced functional materials</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>31</volume><issue>5</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier‐extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field‐effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field‐effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built‐in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (>91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field‐effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications.
Novel interface polarization induced field‐effect passivation based on amorphous transition metal oxide is developed for efficient and ambient‐air‐stable perovskite solar cells. Comprehensive insights into the interaction between the field‐effect passivation, interface polarities, and the performance of the device have been elucidated in detail.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202008052</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0333-1684</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-01, Vol.31 (5), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2481022160 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carrier recombination Carrier transport Dipoles Efficiency Energy conversion efficiency field‐effect passivation Humidity humidity stability interfacial dipoles Interlayers Materials science Passivity perovskite solar cells Perovskites Photovoltaic cells power conversion efficiency Solar cells Work functions |
title | Interface Dipole Induced Field‐Effect Passivation for Achieving 21.7% Efficiency and Stable Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20Dipole%20Induced%20Field%E2%80%90Effect%20Passivation%20for%20Achieving%2021.7%25%20Efficiency%20and%20Stable%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Fengyou&rft.date=2021-01-01&rft.volume=31&rft.issue=5&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202008052&rft_dat=%3Cproquest_cross%3E2481022160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2481022160&rft_id=info:pmid/&rfr_iscdi=true |