Deep learning for procedural content generation
Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-01, Vol.33 (1), p.19-37 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 19 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Liu, Jialin Snodgrass, Sam Khalifa, Ahmed Risi, Sebastian Yannakakis, Georgios N. Togelius, Julian |
description | Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation. |
doi_str_mv | 10.1007/s00521-020-05383-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480986683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480986683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-f0fdc415779bcf0affbe1a4a439ced9c1e82d1011f653163066bfddef4b7d0613</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMZvexR9xRlSgIFVigdlynHPVqjjFTgf-PYYgsTHdcO_z3ulh7BrhFgGaRQZQNXKogYMSRnBzwmYoheAClDllM2hlWWspztlFzjsAkNqoGVvcEx2qPbkUt3FThSFVhzR46o_J7Ss_xJHiWG0oUnLjdoiX7Cy4faar3zlnb48Pr8snvn5ZPS_v1twLo0YeIPReomqatvMBXAgdoZNOirZ0tx7J1D0CYtBKoBagdRf6noLsmh40ijm7mXrLNx9HyqPdDccUy0lbSwOt0dqIkqqnlE9DzomCPaTtu0ufFsF-i7GTGFvE2B8x1hRITFAu4bih9Ff9D_UFQl9lrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480986683</pqid></control><display><type>article</type><title>Deep learning for procedural content generation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Jialin ; Snodgrass, Sam ; Khalifa, Ahmed ; Risi, Sebastian ; Yannakakis, Georgios N. ; Togelius, Julian</creator><creatorcontrib>Liu, Jialin ; Snodgrass, Sam ; Khalifa, Ahmed ; Risi, Sebastian ; Yannakakis, Georgios N. ; Togelius, Julian</creatorcontrib><description>Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05383-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer & video games ; Computer Science ; Cutting parameters ; Data Mining and Knowledge Discovery ; Deep learning ; Image Processing and Computer Vision ; Probability and Statistics in Computer Science ; S. I : Neural Networks in Art ; sound and Design</subject><ispartof>Neural computing & applications, 2021-01, Vol.33 (1), p.19-37</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2020</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-f0fdc415779bcf0affbe1a4a439ced9c1e82d1011f653163066bfddef4b7d0613</citedby><cites>FETCH-LOGICAL-c385t-f0fdc415779bcf0affbe1a4a439ced9c1e82d1011f653163066bfddef4b7d0613</cites><orcidid>0000-0001-7047-8454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-05383-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-05383-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Jialin</creatorcontrib><creatorcontrib>Snodgrass, Sam</creatorcontrib><creatorcontrib>Khalifa, Ahmed</creatorcontrib><creatorcontrib>Risi, Sebastian</creatorcontrib><creatorcontrib>Yannakakis, Georgios N.</creatorcontrib><creatorcontrib>Togelius, Julian</creatorcontrib><title>Deep learning for procedural content generation</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer & video games</subject><subject>Computer Science</subject><subject>Cutting parameters</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Probability and Statistics in Computer Science</subject><subject>S. I : Neural Networks in Art</subject><subject>sound and Design</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5giMZvexR9xRlSgIFVigdlynHPVqjjFTgf-PYYgsTHdcO_z3ulh7BrhFgGaRQZQNXKogYMSRnBzwmYoheAClDllM2hlWWspztlFzjsAkNqoGVvcEx2qPbkUt3FThSFVhzR46o_J7Ss_xJHiWG0oUnLjdoiX7Cy4faar3zlnb48Pr8snvn5ZPS_v1twLo0YeIPReomqatvMBXAgdoZNOirZ0tx7J1D0CYtBKoBagdRf6noLsmh40ijm7mXrLNx9HyqPdDccUy0lbSwOt0dqIkqqnlE9DzomCPaTtu0ufFsF-i7GTGFvE2B8x1hRITFAu4bih9Ff9D_UFQl9lrg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Liu, Jialin</creator><creator>Snodgrass, Sam</creator><creator>Khalifa, Ahmed</creator><creator>Risi, Sebastian</creator><creator>Yannakakis, Georgios N.</creator><creator>Togelius, Julian</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7047-8454</orcidid></search><sort><creationdate>20210101</creationdate><title>Deep learning for procedural content generation</title><author>Liu, Jialin ; Snodgrass, Sam ; Khalifa, Ahmed ; Risi, Sebastian ; Yannakakis, Georgios N. ; Togelius, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-f0fdc415779bcf0affbe1a4a439ced9c1e82d1011f653163066bfddef4b7d0613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer & video games</topic><topic>Computer Science</topic><topic>Cutting parameters</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Probability and Statistics in Computer Science</topic><topic>S. I : Neural Networks in Art</topic><topic>sound and Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jialin</creatorcontrib><creatorcontrib>Snodgrass, Sam</creatorcontrib><creatorcontrib>Khalifa, Ahmed</creatorcontrib><creatorcontrib>Risi, Sebastian</creatorcontrib><creatorcontrib>Yannakakis, Georgios N.</creatorcontrib><creatorcontrib>Togelius, Julian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jialin</au><au>Snodgrass, Sam</au><au>Khalifa, Ahmed</au><au>Risi, Sebastian</au><au>Yannakakis, Georgios N.</au><au>Togelius, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for procedural content generation</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>33</volume><issue>1</issue><spage>19</spage><epage>37</epage><pages>19-37</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Procedural content generation in video games has a long history. Existing procedural content generation methods, such as search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as levels, maps, character models, and textures. A research field centered on content generation in games has existed for more than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could be used for content generation purposes but are rarely used today, and envisages some limitations and potential future directions of deep learning for procedural content generation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05383-8</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-7047-8454</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-01, Vol.33 (1), p.19-37 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2480986683 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer & video games Computer Science Cutting parameters Data Mining and Knowledge Discovery Deep learning Image Processing and Computer Vision Probability and Statistics in Computer Science S. I : Neural Networks in Art sound and Design |
title | Deep learning for procedural content generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20procedural%20content%20generation&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Liu,%20Jialin&rft.date=2021-01-01&rft.volume=33&rft.issue=1&rft.spage=19&rft.epage=37&rft.pages=19-37&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05383-8&rft_dat=%3Cproquest_cross%3E2480986683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480986683&rft_id=info:pmid/&rfr_iscdi=true |