Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride‐Ion Mobility for Low‐Temperature Ammonia Synthesis
Lanthanum oxyhydrides were recently reported to be fast hydride ion conductors with the highest conductivity at 100–400 °C. Here, the relationship between the hydride‐ion conduction and the ammonia synthesis activity of ruthenium‐loaded lanthanum oxyhydrides (Ru/LaH3−2xOx) is investigated. The onset...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2021-01, Vol.11 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 11 |
creator | Ooya, Kayato Li, Jiang Fukui, Keiga Iimura, Soshi Nakao, Takuya Ogasawara, Kiya Sasase, Masato Abe, Hitoshi Niwa, Yasuhiro Kitano, Masaaki Hosono, Hideo |
description | Lanthanum oxyhydrides were recently reported to be fast hydride ion conductors with the highest conductivity at 100–400 °C. Here, the relationship between the hydride‐ion conduction and the ammonia synthesis activity of ruthenium‐loaded lanthanum oxyhydrides (Ru/LaH3−2xOx) is investigated. The onset ammonia formation temperature by the Ru/LaH3−2xOx is lower by 100 °C when compared to the Ru‐loaded lanthanum oxides. The apparent activation energy of ammonia synthesis over Ru/LaH3−2xOx is 64 kJ mol−1, which is much smaller than that of hydride‐ion conductivity (≈100 kJ mol−1), indicating no direct relationship between the catalytic activity and the bulk hydride‐ion conductivity. However, the catalytic performance is strongly correlated with the surface H− ion mobility of Ru/LaH3−2xOx, which gives rise to the formation of low work function electrons at H− ion vacancies near the Ru‐support interface and high resistance for H2 poisoning on the Ru catalyst. Moreover, LaH3−2xOx has high nitridation resistance as compared with lanthanum hydride (LaH3) under ammonia synthesis condition. As a result, the high surface H− concentration of Ru/LaH3−2xOx is preserved during ammonia synthesis, exhibiting more robust activity than Ru/LaH3. Almost the same results are obtained for Ru/CeH3−2xOx implicating the common characteristics of rare‐earth oxyhydride support.
Lanthanide oxyhydrides such as LaH3−2xOx and CeH3−2xOx significantly enhance the activity of a ruthenium catalyst for ammonia synthesis at low reaction temperatures. Ammonia synthesis over Ru/LaH3−2xOx is initiated even at 160 °C, which is lower by 100 °C than that using Ru/La2O3. The surface H− ion mobility is demonstrated to be a dominant factor in this low temperature ammonia synthesis. |
doi_str_mv | 10.1002/aenm.202003723 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480979960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480979960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3543-32db5bb8d6e9265dc55b15605046166d45c51b904b7a8993a9e3287a8f61d4123</originalsourceid><addsrcrecordid>eNqFUE1PAjEU3BhNJMjVcxPPYL_ZHglBIQExiudNl-26JewW226wJ_0J_kZ_iSUYPPoO700mM_OSSZJrBAcIQnwrVVMPMMQQkiEmZ0kHcUT7PKXw_IQJvkx6zm1gHCoQJKSTfDy1vlKNbmswll5ug_MOPFpTG68KkAcwl42vZKMLBZbvoQqFjdCBvfYVmOrXuI7U9-fXzDRgYXK91T6A0lgwN_tIr1S9U1b61iowqmvTaAmeQ0xVTrur5KKUW6d6v7ebvNxNVuNpf768n41H8_6aMEr6BBc5y_O04Epgzoo1YzliHDJIOeK8oGzNUC4gzYcyFYJIoQhOIy45KijCpJvcHHN31ry1yvlsY1rbxJcZpikUQyE4jKrBUbW2xjmrymxndS1tyBDMDj1nh56zU8_RII6Gvd6q8I86G00eFn_eHzgGhG0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480979960</pqid></control><display><type>article</type><title>Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride‐Ion Mobility for Low‐Temperature Ammonia Synthesis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ooya, Kayato ; Li, Jiang ; Fukui, Keiga ; Iimura, Soshi ; Nakao, Takuya ; Ogasawara, Kiya ; Sasase, Masato ; Abe, Hitoshi ; Niwa, Yasuhiro ; Kitano, Masaaki ; Hosono, Hideo</creator><creatorcontrib>Ooya, Kayato ; Li, Jiang ; Fukui, Keiga ; Iimura, Soshi ; Nakao, Takuya ; Ogasawara, Kiya ; Sasase, Masato ; Abe, Hitoshi ; Niwa, Yasuhiro ; Kitano, Masaaki ; Hosono, Hideo</creatorcontrib><description>Lanthanum oxyhydrides were recently reported to be fast hydride ion conductors with the highest conductivity at 100–400 °C. Here, the relationship between the hydride‐ion conduction and the ammonia synthesis activity of ruthenium‐loaded lanthanum oxyhydrides (Ru/LaH3−2xOx) is investigated. The onset ammonia formation temperature by the Ru/LaH3−2xOx is lower by 100 °C when compared to the Ru‐loaded lanthanum oxides. The apparent activation energy of ammonia synthesis over Ru/LaH3−2xOx is 64 kJ mol−1, which is much smaller than that of hydride‐ion conductivity (≈100 kJ mol−1), indicating no direct relationship between the catalytic activity and the bulk hydride‐ion conductivity. However, the catalytic performance is strongly correlated with the surface H− ion mobility of Ru/LaH3−2xOx, which gives rise to the formation of low work function electrons at H− ion vacancies near the Ru‐support interface and high resistance for H2 poisoning on the Ru catalyst. Moreover, LaH3−2xOx has high nitridation resistance as compared with lanthanum hydride (LaH3) under ammonia synthesis condition. As a result, the high surface H− concentration of Ru/LaH3−2xOx is preserved during ammonia synthesis, exhibiting more robust activity than Ru/LaH3. Almost the same results are obtained for Ru/CeH3−2xOx implicating the common characteristics of rare‐earth oxyhydride support.
Lanthanide oxyhydrides such as LaH3−2xOx and CeH3−2xOx significantly enhance the activity of a ruthenium catalyst for ammonia synthesis at low reaction temperatures. Ammonia synthesis over Ru/LaH3−2xOx is initiated even at 160 °C, which is lower by 100 °C than that using Ru/La2O3. The surface H− ion mobility is demonstrated to be a dominant factor in this low temperature ammonia synthesis.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202003723</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; ammonia synthesis ; Catalysts ; Catalytic activity ; Conductivity ; Conductors ; High resistance ; hydride ion conductivity ; Hydrides ; Ionic mobility ; Lanthanum ; Lanthanum oxides ; oxyhydride ; Ruthenium ; ruthenium catalysts ; Work functions</subject><ispartof>Advanced energy materials, 2021-01, Vol.11 (4), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3543-32db5bb8d6e9265dc55b15605046166d45c51b904b7a8993a9e3287a8f61d4123</citedby><cites>FETCH-LOGICAL-c3543-32db5bb8d6e9265dc55b15605046166d45c51b904b7a8993a9e3287a8f61d4123</cites><orcidid>0000-0001-9260-6728 ; 0000-0003-4466-7387 ; 0000-0002-6423-5584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202003723$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202003723$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ooya, Kayato</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Fukui, Keiga</creatorcontrib><creatorcontrib>Iimura, Soshi</creatorcontrib><creatorcontrib>Nakao, Takuya</creatorcontrib><creatorcontrib>Ogasawara, Kiya</creatorcontrib><creatorcontrib>Sasase, Masato</creatorcontrib><creatorcontrib>Abe, Hitoshi</creatorcontrib><creatorcontrib>Niwa, Yasuhiro</creatorcontrib><creatorcontrib>Kitano, Masaaki</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><title>Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride‐Ion Mobility for Low‐Temperature Ammonia Synthesis</title><title>Advanced energy materials</title><description>Lanthanum oxyhydrides were recently reported to be fast hydride ion conductors with the highest conductivity at 100–400 °C. Here, the relationship between the hydride‐ion conduction and the ammonia synthesis activity of ruthenium‐loaded lanthanum oxyhydrides (Ru/LaH3−2xOx) is investigated. The onset ammonia formation temperature by the Ru/LaH3−2xOx is lower by 100 °C when compared to the Ru‐loaded lanthanum oxides. The apparent activation energy of ammonia synthesis over Ru/LaH3−2xOx is 64 kJ mol−1, which is much smaller than that of hydride‐ion conductivity (≈100 kJ mol−1), indicating no direct relationship between the catalytic activity and the bulk hydride‐ion conductivity. However, the catalytic performance is strongly correlated with the surface H− ion mobility of Ru/LaH3−2xOx, which gives rise to the formation of low work function electrons at H− ion vacancies near the Ru‐support interface and high resistance for H2 poisoning on the Ru catalyst. Moreover, LaH3−2xOx has high nitridation resistance as compared with lanthanum hydride (LaH3) under ammonia synthesis condition. As a result, the high surface H− concentration of Ru/LaH3−2xOx is preserved during ammonia synthesis, exhibiting more robust activity than Ru/LaH3. Almost the same results are obtained for Ru/CeH3−2xOx implicating the common characteristics of rare‐earth oxyhydride support.
Lanthanide oxyhydrides such as LaH3−2xOx and CeH3−2xOx significantly enhance the activity of a ruthenium catalyst for ammonia synthesis at low reaction temperatures. Ammonia synthesis over Ru/LaH3−2xOx is initiated even at 160 °C, which is lower by 100 °C than that using Ru/La2O3. The surface H− ion mobility is demonstrated to be a dominant factor in this low temperature ammonia synthesis.</description><subject>Ammonia</subject><subject>ammonia synthesis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Conductivity</subject><subject>Conductors</subject><subject>High resistance</subject><subject>hydride ion conductivity</subject><subject>Hydrides</subject><subject>Ionic mobility</subject><subject>Lanthanum</subject><subject>Lanthanum oxides</subject><subject>oxyhydride</subject><subject>Ruthenium</subject><subject>ruthenium catalysts</subject><subject>Work functions</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUE1PAjEU3BhNJMjVcxPPYL_ZHglBIQExiudNl-26JewW226wJ_0J_kZ_iSUYPPoO700mM_OSSZJrBAcIQnwrVVMPMMQQkiEmZ0kHcUT7PKXw_IQJvkx6zm1gHCoQJKSTfDy1vlKNbmswll5ug_MOPFpTG68KkAcwl42vZKMLBZbvoQqFjdCBvfYVmOrXuI7U9-fXzDRgYXK91T6A0lgwN_tIr1S9U1b61iowqmvTaAmeQ0xVTrur5KKUW6d6v7ebvNxNVuNpf768n41H8_6aMEr6BBc5y_O04Epgzoo1YzliHDJIOeK8oGzNUC4gzYcyFYJIoQhOIy45KijCpJvcHHN31ry1yvlsY1rbxJcZpikUQyE4jKrBUbW2xjmrymxndS1tyBDMDj1nh56zU8_RII6Gvd6q8I86G00eFn_eHzgGhG0</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ooya, Kayato</creator><creator>Li, Jiang</creator><creator>Fukui, Keiga</creator><creator>Iimura, Soshi</creator><creator>Nakao, Takuya</creator><creator>Ogasawara, Kiya</creator><creator>Sasase, Masato</creator><creator>Abe, Hitoshi</creator><creator>Niwa, Yasuhiro</creator><creator>Kitano, Masaaki</creator><creator>Hosono, Hideo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9260-6728</orcidid><orcidid>https://orcid.org/0000-0003-4466-7387</orcidid><orcidid>https://orcid.org/0000-0002-6423-5584</orcidid></search><sort><creationdate>20210101</creationdate><title>Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride‐Ion Mobility for Low‐Temperature Ammonia Synthesis</title><author>Ooya, Kayato ; Li, Jiang ; Fukui, Keiga ; Iimura, Soshi ; Nakao, Takuya ; Ogasawara, Kiya ; Sasase, Masato ; Abe, Hitoshi ; Niwa, Yasuhiro ; Kitano, Masaaki ; Hosono, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3543-32db5bb8d6e9265dc55b15605046166d45c51b904b7a8993a9e3287a8f61d4123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ammonia</topic><topic>ammonia synthesis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Conductivity</topic><topic>Conductors</topic><topic>High resistance</topic><topic>hydride ion conductivity</topic><topic>Hydrides</topic><topic>Ionic mobility</topic><topic>Lanthanum</topic><topic>Lanthanum oxides</topic><topic>oxyhydride</topic><topic>Ruthenium</topic><topic>ruthenium catalysts</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ooya, Kayato</creatorcontrib><creatorcontrib>Li, Jiang</creatorcontrib><creatorcontrib>Fukui, Keiga</creatorcontrib><creatorcontrib>Iimura, Soshi</creatorcontrib><creatorcontrib>Nakao, Takuya</creatorcontrib><creatorcontrib>Ogasawara, Kiya</creatorcontrib><creatorcontrib>Sasase, Masato</creatorcontrib><creatorcontrib>Abe, Hitoshi</creatorcontrib><creatorcontrib>Niwa, Yasuhiro</creatorcontrib><creatorcontrib>Kitano, Masaaki</creatorcontrib><creatorcontrib>Hosono, Hideo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ooya, Kayato</au><au>Li, Jiang</au><au>Fukui, Keiga</au><au>Iimura, Soshi</au><au>Nakao, Takuya</au><au>Ogasawara, Kiya</au><au>Sasase, Masato</au><au>Abe, Hitoshi</au><au>Niwa, Yasuhiro</au><au>Kitano, Masaaki</au><au>Hosono, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride‐Ion Mobility for Low‐Temperature Ammonia Synthesis</atitle><jtitle>Advanced energy materials</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>4</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lanthanum oxyhydrides were recently reported to be fast hydride ion conductors with the highest conductivity at 100–400 °C. Here, the relationship between the hydride‐ion conduction and the ammonia synthesis activity of ruthenium‐loaded lanthanum oxyhydrides (Ru/LaH3−2xOx) is investigated. The onset ammonia formation temperature by the Ru/LaH3−2xOx is lower by 100 °C when compared to the Ru‐loaded lanthanum oxides. The apparent activation energy of ammonia synthesis over Ru/LaH3−2xOx is 64 kJ mol−1, which is much smaller than that of hydride‐ion conductivity (≈100 kJ mol−1), indicating no direct relationship between the catalytic activity and the bulk hydride‐ion conductivity. However, the catalytic performance is strongly correlated with the surface H− ion mobility of Ru/LaH3−2xOx, which gives rise to the formation of low work function electrons at H− ion vacancies near the Ru‐support interface and high resistance for H2 poisoning on the Ru catalyst. Moreover, LaH3−2xOx has high nitridation resistance as compared with lanthanum hydride (LaH3) under ammonia synthesis condition. As a result, the high surface H− concentration of Ru/LaH3−2xOx is preserved during ammonia synthesis, exhibiting more robust activity than Ru/LaH3. Almost the same results are obtained for Ru/CeH3−2xOx implicating the common characteristics of rare‐earth oxyhydride support.
Lanthanide oxyhydrides such as LaH3−2xOx and CeH3−2xOx significantly enhance the activity of a ruthenium catalyst for ammonia synthesis at low reaction temperatures. Ammonia synthesis over Ru/LaH3−2xOx is initiated even at 160 °C, which is lower by 100 °C than that using Ru/La2O3. The surface H− ion mobility is demonstrated to be a dominant factor in this low temperature ammonia synthesis.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202003723</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9260-6728</orcidid><orcidid>https://orcid.org/0000-0003-4466-7387</orcidid><orcidid>https://orcid.org/0000-0002-6423-5584</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2021-01, Vol.11 (4), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2480979960 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ammonia ammonia synthesis Catalysts Catalytic activity Conductivity Conductors High resistance hydride ion conductivity Hydrides Ionic mobility Lanthanum Lanthanum oxides oxyhydride Ruthenium ruthenium catalysts Work functions |
title | Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride‐Ion Mobility for Low‐Temperature Ammonia Synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ruthenium%20Catalysts%20Promoted%20by%20Lanthanide%20Oxyhydrides%20with%20High%20Hydride%E2%80%90Ion%20Mobility%20for%20Low%E2%80%90Temperature%20Ammonia%20Synthesis&rft.jtitle=Advanced%20energy%20materials&rft.au=Ooya,%20Kayato&rft.date=2021-01-01&rft.volume=11&rft.issue=4&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202003723&rft_dat=%3Cproquest_cross%3E2480979960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480979960&rft_id=info:pmid/&rfr_iscdi=true |