Modified scattering for inhomogeneous nonlinear Schrödinger equations with and without inverse-square potential

We consider the final state problem for the inhomogeneous nonlinear Schr\"odinger equation with a critical long-range nonlinearity. Given a prescribed asymptotic profile, which has a logarithmic phase correction compared with the free evolution, we construct a unique global solution which conve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Aoki, Kazuki, Inui, Takahisa, Miyazaki, Hayato, Mizutani, Haruya, Kota Uriya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Aoki, Kazuki
Inui, Takahisa
Miyazaki, Hayato
Mizutani, Haruya
Kota Uriya
description We consider the final state problem for the inhomogeneous nonlinear Schr\"odinger equation with a critical long-range nonlinearity. Given a prescribed asymptotic profile, which has a logarithmic phase correction compared with the free evolution, we construct a unique global solution which converges to the profile. As a consequence, the existence of modified wave operators for localized small scattering data is obtained. We also study the same problem for the case with the critical inverse-square potential under the radial symmetry. In particular, we construct the modified wave operators for the long-range nonlinear Schr\"odinger equation with the critical inverse-square potential in three space dimensions, under the radial symmetry.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2480952442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480952442</sourcerecordid><originalsourceid>FETCH-proquest_journals_24809524423</originalsourceid><addsrcrecordid>eNqNy0sKwkAQBNBBEBT1Dg2uA3GS-FmL4saV7mUwHTMSu2P3jN7MC3gxg3gAV1VQr3pmaLNslixzawdmonpN09TOF7YosqFp91z6ymMJenYhoHi6QMUCnmq-8QUJOSoQU-MJncDhXMv7VXYMBfAeXfBMCk8fanBUfgvH0P0fKIqJdkQQWg5IwbtmbPqVaxQnvxyZ6XZzXO-SVvgeUcPpylGom042X6arwua5zf5TH1bXTW8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480952442</pqid></control><display><type>article</type><title>Modified scattering for inhomogeneous nonlinear Schrödinger equations with and without inverse-square potential</title><source>Free E- Journals</source><creator>Aoki, Kazuki ; Inui, Takahisa ; Miyazaki, Hayato ; Mizutani, Haruya ; Kota Uriya</creator><creatorcontrib>Aoki, Kazuki ; Inui, Takahisa ; Miyazaki, Hayato ; Mizutani, Haruya ; Kota Uriya</creatorcontrib><description>We consider the final state problem for the inhomogeneous nonlinear Schr\"odinger equation with a critical long-range nonlinearity. Given a prescribed asymptotic profile, which has a logarithmic phase correction compared with the free evolution, we construct a unique global solution which converges to the profile. As a consequence, the existence of modified wave operators for localized small scattering data is obtained. We also study the same problem for the case with the critical inverse-square potential under the radial symmetry. In particular, we construct the modified wave operators for the long-range nonlinear Schr\"odinger equation with the critical inverse-square potential in three space dimensions, under the radial symmetry.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nonlinear equations ; Nonlinearity ; Operators ; Scattering ; Schrodinger equation ; Symmetry</subject><ispartof>arXiv.org, 2021-05</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Aoki, Kazuki</creatorcontrib><creatorcontrib>Inui, Takahisa</creatorcontrib><creatorcontrib>Miyazaki, Hayato</creatorcontrib><creatorcontrib>Mizutani, Haruya</creatorcontrib><creatorcontrib>Kota Uriya</creatorcontrib><title>Modified scattering for inhomogeneous nonlinear Schrödinger equations with and without inverse-square potential</title><title>arXiv.org</title><description>We consider the final state problem for the inhomogeneous nonlinear Schr\"odinger equation with a critical long-range nonlinearity. Given a prescribed asymptotic profile, which has a logarithmic phase correction compared with the free evolution, we construct a unique global solution which converges to the profile. As a consequence, the existence of modified wave operators for localized small scattering data is obtained. We also study the same problem for the case with the critical inverse-square potential under the radial symmetry. In particular, we construct the modified wave operators for the long-range nonlinear Schr\"odinger equation with the critical inverse-square potential in three space dimensions, under the radial symmetry.</description><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Operators</subject><subject>Scattering</subject><subject>Schrodinger equation</subject><subject>Symmetry</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy0sKwkAQBNBBEBT1Dg2uA3GS-FmL4saV7mUwHTMSu2P3jN7MC3gxg3gAV1VQr3pmaLNslixzawdmonpN09TOF7YosqFp91z6ymMJenYhoHi6QMUCnmq-8QUJOSoQU-MJncDhXMv7VXYMBfAeXfBMCk8fanBUfgvH0P0fKIqJdkQQWg5IwbtmbPqVaxQnvxyZ6XZzXO-SVvgeUcPpylGom042X6arwua5zf5TH1bXTW8</recordid><startdate>20210504</startdate><enddate>20210504</enddate><creator>Aoki, Kazuki</creator><creator>Inui, Takahisa</creator><creator>Miyazaki, Hayato</creator><creator>Mizutani, Haruya</creator><creator>Kota Uriya</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210504</creationdate><title>Modified scattering for inhomogeneous nonlinear Schrödinger equations with and without inverse-square potential</title><author>Aoki, Kazuki ; Inui, Takahisa ; Miyazaki, Hayato ; Mizutani, Haruya ; Kota Uriya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24809524423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Operators</topic><topic>Scattering</topic><topic>Schrodinger equation</topic><topic>Symmetry</topic><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Kazuki</creatorcontrib><creatorcontrib>Inui, Takahisa</creatorcontrib><creatorcontrib>Miyazaki, Hayato</creatorcontrib><creatorcontrib>Mizutani, Haruya</creatorcontrib><creatorcontrib>Kota Uriya</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Kazuki</au><au>Inui, Takahisa</au><au>Miyazaki, Hayato</au><au>Mizutani, Haruya</au><au>Kota Uriya</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Modified scattering for inhomogeneous nonlinear Schrödinger equations with and without inverse-square potential</atitle><jtitle>arXiv.org</jtitle><date>2021-05-04</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>We consider the final state problem for the inhomogeneous nonlinear Schr\"odinger equation with a critical long-range nonlinearity. Given a prescribed asymptotic profile, which has a logarithmic phase correction compared with the free evolution, we construct a unique global solution which converges to the profile. As a consequence, the existence of modified wave operators for localized small scattering data is obtained. We also study the same problem for the case with the critical inverse-square potential under the radial symmetry. In particular, we construct the modified wave operators for the long-range nonlinear Schr\"odinger equation with the critical inverse-square potential in three space dimensions, under the radial symmetry.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2480952442
source Free E- Journals
subjects Nonlinear equations
Nonlinearity
Operators
Scattering
Schrodinger equation
Symmetry
title Modified scattering for inhomogeneous nonlinear Schrödinger equations with and without inverse-square potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Modified%20scattering%20for%20inhomogeneous%20nonlinear%20Schr%C3%B6dinger%20equations%20with%20and%20without%20inverse-square%20potential&rft.jtitle=arXiv.org&rft.au=Aoki,%20Kazuki&rft.date=2021-05-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2480952442%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480952442&rft_id=info:pmid/&rfr_iscdi=true