A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation
In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10 −5 to 5 × 10 −3 s −1 . A piecewise constitutive model was applied to describe the work hardening-dyn...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-07, Vol.54 (13), p.9775-9796 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9796 |
---|---|
container_issue | 13 |
container_start_page | 9775 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Wang, Kaimeng Jing, Hongyang Xu, Lianyong Han, Yongdian Zhao, Lei Xiao, Bo Yang, Shangqing |
description | In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10
−5
to 5 × 10
−3
s
−1
. A piecewise constitutive model was applied to describe the work hardening-dynamic recovery and dynamic flow softening behaviors. The predicted flow stresses have a good agreement with the experimental results. Microstructures in the fracture frontier of the ruptured specimens were analyzed to further understand the fracture mechanism. Twinning and dislocation structures were surveyed at the tested conditions. Twin structure decreased as temperature increased. These two precipitates were characterized: M
23
C
6
carbide located in the grain boundary and spherical
γ
′ phase in the matrix. Precipitates, twin and dislocation structures are the dominant strengthening mechanism of the superalloy during high-temperature deformation. Orientations //RD and //RD were detected as the main texture structure. Cavities formed near the precipitates and triple grain boundary. On the basis of fracture surface observations, the 750H superalloy shows both intergranular and transgranular fracture mode in the tested conditions. The dimples became small and shallow as the strain rate increased. |
doi_str_mv | 10.1007/s10853-019-03566-w |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480903922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582544757</galeid><sourcerecordid>A582544757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c1bb062397801779df8e666f08c0a14cb9e54885cf05d65f9674c2bdab1a54483</originalsourceid><addsrcrecordid>eNp9UU2LFDEQDaLgOPoHPAU8CWatpDv9cRwWdRcWBD_OIZ2uzGTtTsYkveP-Dv-wmW1B9iI5FKHee1X1HiGvOVxwgPZ94tDJigHvGVSyadjpCdlw2Vas7qB6SjYAQjBRN_w5eZHSLQDIVvAN-b2jR4cGTy4hNcGn7PKS3R3SOYw4vaOzMzGkHBeTl4hU-5HaqNfPjOagvUszDZZq6p35gRMbdMKRpuWIUU9TuKethCs6LtH5PT24_YFlnM_NB42MPrkJ6Yg2xFlnF_xL8szqKeGrv3VLvn_88O3yit18_nR9ubthpupFZoYPAzSi6tsOeNv2o-2waRoLnQHNazP0KOuuk8aCHBtp-6atjRhGPXAt67qrtuTNqnuM4eeCKavbsERfRipRbOuhjBEFdbGi9npC5bwNudxf3ojFm-DRlvXVTnaiiLbF8i15-4hQMBl_5b1eUlLXX788xooVezY5RbTqGN2s473ioM7JqjVZVZJVD8mqUyFVKykdz55i_Lf3f1h_AJBPqJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480903922</pqid></control><display><type>article</type><title>A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation</title><source>SpringerLink_现刊</source><creator>Wang, Kaimeng ; Jing, Hongyang ; Xu, Lianyong ; Han, Yongdian ; Zhao, Lei ; Xiao, Bo ; Yang, Shangqing</creator><creatorcontrib>Wang, Kaimeng ; Jing, Hongyang ; Xu, Lianyong ; Han, Yongdian ; Zhao, Lei ; Xiao, Bo ; Yang, Shangqing</creatorcontrib><description>In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10
−5
to 5 × 10
−3
s
−1
. A piecewise constitutive model was applied to describe the work hardening-dynamic recovery and dynamic flow softening behaviors. The predicted flow stresses have a good agreement with the experimental results. Microstructures in the fracture frontier of the ruptured specimens were analyzed to further understand the fracture mechanism. Twinning and dislocation structures were surveyed at the tested conditions. Twin structure decreased as temperature increased. These two precipitates were characterized: M
23
C
6
carbide located in the grain boundary and spherical
γ
′ phase in the matrix. Precipitates, twin and dislocation structures are the dominant strengthening mechanism of the superalloy during high-temperature deformation. Orientations < 111 >//RD and < 001 >//RD were detected as the main texture structure. Cavities formed near the precipitates and triple grain boundary. On the basis of fracture surface observations, the 750H superalloy shows both intergranular and transgranular fracture mode in the tested conditions. The dimples became small and shallow as the strain rate increased.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03566-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemistry and Materials Science ; Classical Mechanics ; Coal-fired power plants ; Constitutive models ; Crystallography and Scattering Methods ; Dimpling ; Fracture mechanics ; Fracture surfaces ; Grain boundaries ; High temperature ; Intergranular fracture ; Materials Science ; Mathematical models ; Metals ; Nickel ; Nickel base alloys ; Polymer Sciences ; Precipitates ; Solid Mechanics ; Strain rate ; Superalloys ; Surveys ; Tensile deformation ; Tensile tests ; Transgranular fracture ; Twinning ; Work hardening ; Yield strength</subject><ispartof>Journal of materials science, 2019-07, Vol.54 (13), p.9775-9796</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c1bb062397801779df8e666f08c0a14cb9e54885cf05d65f9674c2bdab1a54483</citedby><cites>FETCH-LOGICAL-c392t-c1bb062397801779df8e666f08c0a14cb9e54885cf05d65f9674c2bdab1a54483</cites><orcidid>0000-0001-7811-6685 ; 0000-0003-0249-0931 ; 0000-0001-7194-981X ; 0000-0001-6096-8548 ; 0000-0002-1787-0876 ; 0000-0002-0362-843X ; 0000-0002-5919-2292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03566-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03566-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Kaimeng</creatorcontrib><creatorcontrib>Jing, Hongyang</creatorcontrib><creatorcontrib>Xu, Lianyong</creatorcontrib><creatorcontrib>Han, Yongdian</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Yang, Shangqing</creatorcontrib><title>A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10
−5
to 5 × 10
−3
s
−1
. A piecewise constitutive model was applied to describe the work hardening-dynamic recovery and dynamic flow softening behaviors. The predicted flow stresses have a good agreement with the experimental results. Microstructures in the fracture frontier of the ruptured specimens were analyzed to further understand the fracture mechanism. Twinning and dislocation structures were surveyed at the tested conditions. Twin structure decreased as temperature increased. These two precipitates were characterized: M
23
C
6
carbide located in the grain boundary and spherical
γ
′ phase in the matrix. Precipitates, twin and dislocation structures are the dominant strengthening mechanism of the superalloy during high-temperature deformation. Orientations < 111 >//RD and < 001 >//RD were detected as the main texture structure. Cavities formed near the precipitates and triple grain boundary. On the basis of fracture surface observations, the 750H superalloy shows both intergranular and transgranular fracture mode in the tested conditions. The dimples became small and shallow as the strain rate increased.</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coal-fired power plants</subject><subject>Constitutive models</subject><subject>Crystallography and Scattering Methods</subject><subject>Dimpling</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Grain boundaries</subject><subject>High temperature</subject><subject>Intergranular fracture</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Polymer Sciences</subject><subject>Precipitates</subject><subject>Solid Mechanics</subject><subject>Strain rate</subject><subject>Superalloys</subject><subject>Surveys</subject><subject>Tensile deformation</subject><subject>Tensile tests</subject><subject>Transgranular fracture</subject><subject>Twinning</subject><subject>Work hardening</subject><subject>Yield strength</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UU2LFDEQDaLgOPoHPAU8CWatpDv9cRwWdRcWBD_OIZ2uzGTtTsYkveP-Dv-wmW1B9iI5FKHee1X1HiGvOVxwgPZ94tDJigHvGVSyadjpCdlw2Vas7qB6SjYAQjBRN_w5eZHSLQDIVvAN-b2jR4cGTy4hNcGn7PKS3R3SOYw4vaOzMzGkHBeTl4hU-5HaqNfPjOagvUszDZZq6p35gRMbdMKRpuWIUU9TuKethCs6LtH5PT24_YFlnM_NB42MPrkJ6Yg2xFlnF_xL8szqKeGrv3VLvn_88O3yit18_nR9ubthpupFZoYPAzSi6tsOeNv2o-2waRoLnQHNazP0KOuuk8aCHBtp-6atjRhGPXAt67qrtuTNqnuM4eeCKavbsERfRipRbOuhjBEFdbGi9npC5bwNudxf3ojFm-DRlvXVTnaiiLbF8i15-4hQMBl_5b1eUlLXX788xooVezY5RbTqGN2s473ioM7JqjVZVZJVD8mqUyFVKykdz55i_Lf3f1h_AJBPqJs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Wang, Kaimeng</creator><creator>Jing, Hongyang</creator><creator>Xu, Lianyong</creator><creator>Han, Yongdian</creator><creator>Zhao, Lei</creator><creator>Xiao, Bo</creator><creator>Yang, Shangqing</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7811-6685</orcidid><orcidid>https://orcid.org/0000-0003-0249-0931</orcidid><orcidid>https://orcid.org/0000-0001-7194-981X</orcidid><orcidid>https://orcid.org/0000-0001-6096-8548</orcidid><orcidid>https://orcid.org/0000-0002-1787-0876</orcidid><orcidid>https://orcid.org/0000-0002-0362-843X</orcidid><orcidid>https://orcid.org/0000-0002-5919-2292</orcidid></search><sort><creationdate>20190701</creationdate><title>A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation</title><author>Wang, Kaimeng ; Jing, Hongyang ; Xu, Lianyong ; Han, Yongdian ; Zhao, Lei ; Xiao, Bo ; Yang, Shangqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c1bb062397801779df8e666f08c0a14cb9e54885cf05d65f9674c2bdab1a54483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coal-fired power plants</topic><topic>Constitutive models</topic><topic>Crystallography and Scattering Methods</topic><topic>Dimpling</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Grain boundaries</topic><topic>High temperature</topic><topic>Intergranular fracture</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Polymer Sciences</topic><topic>Precipitates</topic><topic>Solid Mechanics</topic><topic>Strain rate</topic><topic>Superalloys</topic><topic>Surveys</topic><topic>Tensile deformation</topic><topic>Tensile tests</topic><topic>Transgranular fracture</topic><topic>Twinning</topic><topic>Work hardening</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaimeng</creatorcontrib><creatorcontrib>Jing, Hongyang</creatorcontrib><creatorcontrib>Xu, Lianyong</creatorcontrib><creatorcontrib>Han, Yongdian</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Yang, Shangqing</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaimeng</au><au>Jing, Hongyang</au><au>Xu, Lianyong</au><au>Han, Yongdian</au><au>Zhao, Lei</au><au>Xiao, Bo</au><au>Yang, Shangqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>54</volume><issue>13</issue><spage>9775</spage><epage>9796</epage><pages>9775-9796</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10
−5
to 5 × 10
−3
s
−1
. A piecewise constitutive model was applied to describe the work hardening-dynamic recovery and dynamic flow softening behaviors. The predicted flow stresses have a good agreement with the experimental results. Microstructures in the fracture frontier of the ruptured specimens were analyzed to further understand the fracture mechanism. Twinning and dislocation structures were surveyed at the tested conditions. Twin structure decreased as temperature increased. These two precipitates were characterized: M
23
C
6
carbide located in the grain boundary and spherical
γ
′ phase in the matrix. Precipitates, twin and dislocation structures are the dominant strengthening mechanism of the superalloy during high-temperature deformation. Orientations < 111 >//RD and < 001 >//RD were detected as the main texture structure. Cavities formed near the precipitates and triple grain boundary. On the basis of fracture surface observations, the 750H superalloy shows both intergranular and transgranular fracture mode in the tested conditions. The dimples became small and shallow as the strain rate increased.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03566-w</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7811-6685</orcidid><orcidid>https://orcid.org/0000-0003-0249-0931</orcidid><orcidid>https://orcid.org/0000-0001-7194-981X</orcidid><orcidid>https://orcid.org/0000-0001-6096-8548</orcidid><orcidid>https://orcid.org/0000-0002-1787-0876</orcidid><orcidid>https://orcid.org/0000-0002-0362-843X</orcidid><orcidid>https://orcid.org/0000-0002-5919-2292</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-07, Vol.54 (13), p.9775-9796 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2480903922 |
source | SpringerLink_现刊 |
subjects | Analysis Characterization and Evaluation of Materials Chemical precipitation Chemistry and Materials Science Classical Mechanics Coal-fired power plants Constitutive models Crystallography and Scattering Methods Dimpling Fracture mechanics Fracture surfaces Grain boundaries High temperature Intergranular fracture Materials Science Mathematical models Metals Nickel Nickel base alloys Polymer Sciences Precipitates Solid Mechanics Strain rate Superalloys Surveys Tensile deformation Tensile tests Transgranular fracture Twinning Work hardening Yield strength |
title | A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20piecewise%20constitutive%20model,%20microstructure%20and%20fracture%20mechanism%20of%20a%20nickel-based%20superalloy%20750H%20during%20high-temperature%20tensile%20deformation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Kaimeng&rft.date=2019-07-01&rft.volume=54&rft.issue=13&rft.spage=9775&rft.epage=9796&rft.pages=9775-9796&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03566-w&rft_dat=%3Cgale_proqu%3EA582544757%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480903922&rft_id=info:pmid/&rft_galeid=A582544757&rfr_iscdi=true |