A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation

In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10 −5 to 5 × 10 −3  s −1 . A piecewise constitutive model was applied to describe the work hardening-dyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-07, Vol.54 (13), p.9775-9796
Hauptverfasser: Wang, Kaimeng, Jing, Hongyang, Xu, Lianyong, Han, Yongdian, Zhao, Lei, Xiao, Bo, Yang, Shangqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9796
container_issue 13
container_start_page 9775
container_title Journal of materials science
container_volume 54
creator Wang, Kaimeng
Jing, Hongyang
Xu, Lianyong
Han, Yongdian
Zhao, Lei
Xiao, Bo
Yang, Shangqing
description In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10 −5 to 5 × 10 −3  s −1 . A piecewise constitutive model was applied to describe the work hardening-dynamic recovery and dynamic flow softening behaviors. The predicted flow stresses have a good agreement with the experimental results. Microstructures in the fracture frontier of the ruptured specimens were analyzed to further understand the fracture mechanism. Twinning and dislocation structures were surveyed at the tested conditions. Twin structure decreased as temperature increased. These two precipitates were characterized: M 23 C 6 carbide located in the grain boundary and spherical γ ′ phase in the matrix. Precipitates, twin and dislocation structures are the dominant strengthening mechanism of the superalloy during high-temperature deformation. Orientations //RD and //RD were detected as the main texture structure. Cavities formed near the precipitates and triple grain boundary. On the basis of fracture surface observations, the 750H superalloy shows both intergranular and transgranular fracture mode in the tested conditions. The dimples became small and shallow as the strain rate increased.
doi_str_mv 10.1007/s10853-019-03566-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480903922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582544757</galeid><sourcerecordid>A582544757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-c1bb062397801779df8e666f08c0a14cb9e54885cf05d65f9674c2bdab1a54483</originalsourceid><addsrcrecordid>eNp9UU2LFDEQDaLgOPoHPAU8CWatpDv9cRwWdRcWBD_OIZ2uzGTtTsYkveP-Dv-wmW1B9iI5FKHee1X1HiGvOVxwgPZ94tDJigHvGVSyadjpCdlw2Vas7qB6SjYAQjBRN_w5eZHSLQDIVvAN-b2jR4cGTy4hNcGn7PKS3R3SOYw4vaOzMzGkHBeTl4hU-5HaqNfPjOagvUszDZZq6p35gRMbdMKRpuWIUU9TuKethCs6LtH5PT24_YFlnM_NB42MPrkJ6Yg2xFlnF_xL8szqKeGrv3VLvn_88O3yit18_nR9ubthpupFZoYPAzSi6tsOeNv2o-2waRoLnQHNazP0KOuuk8aCHBtp-6atjRhGPXAt67qrtuTNqnuM4eeCKavbsERfRipRbOuhjBEFdbGi9npC5bwNudxf3ojFm-DRlvXVTnaiiLbF8i15-4hQMBl_5b1eUlLXX788xooVezY5RbTqGN2s473ioM7JqjVZVZJVD8mqUyFVKykdz55i_Lf3f1h_AJBPqJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480903922</pqid></control><display><type>article</type><title>A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation</title><source>SpringerLink_现刊</source><creator>Wang, Kaimeng ; Jing, Hongyang ; Xu, Lianyong ; Han, Yongdian ; Zhao, Lei ; Xiao, Bo ; Yang, Shangqing</creator><creatorcontrib>Wang, Kaimeng ; Jing, Hongyang ; Xu, Lianyong ; Han, Yongdian ; Zhao, Lei ; Xiao, Bo ; Yang, Shangqing</creatorcontrib><description>In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10 −5 to 5 × 10 −3  s −1 . A piecewise constitutive model was applied to describe the work hardening-dynamic recovery and dynamic flow softening behaviors. The predicted flow stresses have a good agreement with the experimental results. Microstructures in the fracture frontier of the ruptured specimens were analyzed to further understand the fracture mechanism. Twinning and dislocation structures were surveyed at the tested conditions. Twin structure decreased as temperature increased. These two precipitates were characterized: M 23 C 6 carbide located in the grain boundary and spherical γ ′ phase in the matrix. Precipitates, twin and dislocation structures are the dominant strengthening mechanism of the superalloy during high-temperature deformation. Orientations &lt; 111 &gt;//RD and &lt; 001 &gt;//RD were detected as the main texture structure. Cavities formed near the precipitates and triple grain boundary. On the basis of fracture surface observations, the 750H superalloy shows both intergranular and transgranular fracture mode in the tested conditions. The dimples became small and shallow as the strain rate increased.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03566-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Characterization and Evaluation of Materials ; Chemical precipitation ; Chemistry and Materials Science ; Classical Mechanics ; Coal-fired power plants ; Constitutive models ; Crystallography and Scattering Methods ; Dimpling ; Fracture mechanics ; Fracture surfaces ; Grain boundaries ; High temperature ; Intergranular fracture ; Materials Science ; Mathematical models ; Metals ; Nickel ; Nickel base alloys ; Polymer Sciences ; Precipitates ; Solid Mechanics ; Strain rate ; Superalloys ; Surveys ; Tensile deformation ; Tensile tests ; Transgranular fracture ; Twinning ; Work hardening ; Yield strength</subject><ispartof>Journal of materials science, 2019-07, Vol.54 (13), p.9775-9796</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-c1bb062397801779df8e666f08c0a14cb9e54885cf05d65f9674c2bdab1a54483</citedby><cites>FETCH-LOGICAL-c392t-c1bb062397801779df8e666f08c0a14cb9e54885cf05d65f9674c2bdab1a54483</cites><orcidid>0000-0001-7811-6685 ; 0000-0003-0249-0931 ; 0000-0001-7194-981X ; 0000-0001-6096-8548 ; 0000-0002-1787-0876 ; 0000-0002-0362-843X ; 0000-0002-5919-2292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03566-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03566-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Kaimeng</creatorcontrib><creatorcontrib>Jing, Hongyang</creatorcontrib><creatorcontrib>Xu, Lianyong</creatorcontrib><creatorcontrib>Han, Yongdian</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Yang, Shangqing</creatorcontrib><title>A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10 −5 to 5 × 10 −3  s −1 . A piecewise constitutive model was applied to describe the work hardening-dynamic recovery and dynamic flow softening behaviors. The predicted flow stresses have a good agreement with the experimental results. Microstructures in the fracture frontier of the ruptured specimens were analyzed to further understand the fracture mechanism. Twinning and dislocation structures were surveyed at the tested conditions. Twin structure decreased as temperature increased. These two precipitates were characterized: M 23 C 6 carbide located in the grain boundary and spherical γ ′ phase in the matrix. Precipitates, twin and dislocation structures are the dominant strengthening mechanism of the superalloy during high-temperature deformation. Orientations &lt; 111 &gt;//RD and &lt; 001 &gt;//RD were detected as the main texture structure. Cavities formed near the precipitates and triple grain boundary. On the basis of fracture surface observations, the 750H superalloy shows both intergranular and transgranular fracture mode in the tested conditions. The dimples became small and shallow as the strain rate increased.</description><subject>Analysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical precipitation</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Coal-fired power plants</subject><subject>Constitutive models</subject><subject>Crystallography and Scattering Methods</subject><subject>Dimpling</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Grain boundaries</subject><subject>High temperature</subject><subject>Intergranular fracture</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Metals</subject><subject>Nickel</subject><subject>Nickel base alloys</subject><subject>Polymer Sciences</subject><subject>Precipitates</subject><subject>Solid Mechanics</subject><subject>Strain rate</subject><subject>Superalloys</subject><subject>Surveys</subject><subject>Tensile deformation</subject><subject>Tensile tests</subject><subject>Transgranular fracture</subject><subject>Twinning</subject><subject>Work hardening</subject><subject>Yield strength</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UU2LFDEQDaLgOPoHPAU8CWatpDv9cRwWdRcWBD_OIZ2uzGTtTsYkveP-Dv-wmW1B9iI5FKHee1X1HiGvOVxwgPZ94tDJigHvGVSyadjpCdlw2Vas7qB6SjYAQjBRN_w5eZHSLQDIVvAN-b2jR4cGTy4hNcGn7PKS3R3SOYw4vaOzMzGkHBeTl4hU-5HaqNfPjOagvUszDZZq6p35gRMbdMKRpuWIUU9TuKethCs6LtH5PT24_YFlnM_NB42MPrkJ6Yg2xFlnF_xL8szqKeGrv3VLvn_88O3yit18_nR9ubthpupFZoYPAzSi6tsOeNv2o-2waRoLnQHNazP0KOuuk8aCHBtp-6atjRhGPXAt67qrtuTNqnuM4eeCKavbsERfRipRbOuhjBEFdbGi9npC5bwNudxf3ojFm-DRlvXVTnaiiLbF8i15-4hQMBl_5b1eUlLXX788xooVezY5RbTqGN2s473ioM7JqjVZVZJVD8mqUyFVKykdz55i_Lf3f1h_AJBPqJs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Wang, Kaimeng</creator><creator>Jing, Hongyang</creator><creator>Xu, Lianyong</creator><creator>Han, Yongdian</creator><creator>Zhao, Lei</creator><creator>Xiao, Bo</creator><creator>Yang, Shangqing</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7811-6685</orcidid><orcidid>https://orcid.org/0000-0003-0249-0931</orcidid><orcidid>https://orcid.org/0000-0001-7194-981X</orcidid><orcidid>https://orcid.org/0000-0001-6096-8548</orcidid><orcidid>https://orcid.org/0000-0002-1787-0876</orcidid><orcidid>https://orcid.org/0000-0002-0362-843X</orcidid><orcidid>https://orcid.org/0000-0002-5919-2292</orcidid></search><sort><creationdate>20190701</creationdate><title>A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation</title><author>Wang, Kaimeng ; Jing, Hongyang ; Xu, Lianyong ; Han, Yongdian ; Zhao, Lei ; Xiao, Bo ; Yang, Shangqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-c1bb062397801779df8e666f08c0a14cb9e54885cf05d65f9674c2bdab1a54483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical precipitation</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Coal-fired power plants</topic><topic>Constitutive models</topic><topic>Crystallography and Scattering Methods</topic><topic>Dimpling</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Grain boundaries</topic><topic>High temperature</topic><topic>Intergranular fracture</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Metals</topic><topic>Nickel</topic><topic>Nickel base alloys</topic><topic>Polymer Sciences</topic><topic>Precipitates</topic><topic>Solid Mechanics</topic><topic>Strain rate</topic><topic>Superalloys</topic><topic>Surveys</topic><topic>Tensile deformation</topic><topic>Tensile tests</topic><topic>Transgranular fracture</topic><topic>Twinning</topic><topic>Work hardening</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaimeng</creatorcontrib><creatorcontrib>Jing, Hongyang</creatorcontrib><creatorcontrib>Xu, Lianyong</creatorcontrib><creatorcontrib>Han, Yongdian</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Yang, Shangqing</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaimeng</au><au>Jing, Hongyang</au><au>Xu, Lianyong</au><au>Han, Yongdian</au><au>Zhao, Lei</au><au>Xiao, Bo</au><au>Yang, Shangqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>54</volume><issue>13</issue><spage>9775</spage><epage>9796</epage><pages>9775-9796</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In order to understand the high-temperature deformation behavior of a nickel-based superalloy, a range of tensile tests were carried out at 720, 750, and 780 °C with strain rates ranging from 5 × 10 −5 to 5 × 10 −3  s −1 . A piecewise constitutive model was applied to describe the work hardening-dynamic recovery and dynamic flow softening behaviors. The predicted flow stresses have a good agreement with the experimental results. Microstructures in the fracture frontier of the ruptured specimens were analyzed to further understand the fracture mechanism. Twinning and dislocation structures were surveyed at the tested conditions. Twin structure decreased as temperature increased. These two precipitates were characterized: M 23 C 6 carbide located in the grain boundary and spherical γ ′ phase in the matrix. Precipitates, twin and dislocation structures are the dominant strengthening mechanism of the superalloy during high-temperature deformation. Orientations &lt; 111 &gt;//RD and &lt; 001 &gt;//RD were detected as the main texture structure. Cavities formed near the precipitates and triple grain boundary. On the basis of fracture surface observations, the 750H superalloy shows both intergranular and transgranular fracture mode in the tested conditions. The dimples became small and shallow as the strain rate increased.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03566-w</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-7811-6685</orcidid><orcidid>https://orcid.org/0000-0003-0249-0931</orcidid><orcidid>https://orcid.org/0000-0001-7194-981X</orcidid><orcidid>https://orcid.org/0000-0001-6096-8548</orcidid><orcidid>https://orcid.org/0000-0002-1787-0876</orcidid><orcidid>https://orcid.org/0000-0002-0362-843X</orcidid><orcidid>https://orcid.org/0000-0002-5919-2292</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-07, Vol.54 (13), p.9775-9796
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2480903922
source SpringerLink_现刊
subjects Analysis
Characterization and Evaluation of Materials
Chemical precipitation
Chemistry and Materials Science
Classical Mechanics
Coal-fired power plants
Constitutive models
Crystallography and Scattering Methods
Dimpling
Fracture mechanics
Fracture surfaces
Grain boundaries
High temperature
Intergranular fracture
Materials Science
Mathematical models
Metals
Nickel
Nickel base alloys
Polymer Sciences
Precipitates
Solid Mechanics
Strain rate
Superalloys
Surveys
Tensile deformation
Tensile tests
Transgranular fracture
Twinning
Work hardening
Yield strength
title A piecewise constitutive model, microstructure and fracture mechanism of a nickel-based superalloy 750H during high-temperature tensile deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20piecewise%20constitutive%20model,%20microstructure%20and%20fracture%20mechanism%20of%20a%20nickel-based%20superalloy%20750H%20during%20high-temperature%20tensile%20deformation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Kaimeng&rft.date=2019-07-01&rft.volume=54&rft.issue=13&rft.spage=9775&rft.epage=9796&rft.pages=9775-9796&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03566-w&rft_dat=%3Cgale_proqu%3EA582544757%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480903922&rft_id=info:pmid/&rft_galeid=A582544757&rfr_iscdi=true