Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays
Photoelectrocatalytic CO 2 reduction to CO was achieved on Cu 2 O/Cu 2 S nanoparticles which are immobilized in TiO 2 nanocavity array. The Cu 2 S shell was obtained by ions exchange reaction of O 2− and S 2− on the surface of Cu 2 O by a chemical vapor deposition with Na 2 S precursor. This coating...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-07, Vol.54 (14), p.10379-10388 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10388 |
---|---|
container_issue | 14 |
container_start_page | 10379 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Guo, Limin Cao, Jinqing Zhang, Jiameng Hao, Yanan Bi, Ke |
description | Photoelectrocatalytic CO
2
reduction to CO was achieved on Cu
2
O/Cu
2
S nanoparticles which are immobilized in TiO
2
nanocavity array. The Cu
2
S shell was obtained by ions exchange reaction of O
2−
and S
2−
on the surface of Cu
2
O by a chemical vapor deposition with Na
2
S precursor. This coating can protect the Cu
2
O nanoparticle from photocorrosion during photocatalysis. The lower resistance and plasmonic absorbance endow a superior activity of the Cu
2
O/Cu
2
S heterostructures toward photoelectrochemical reduction of CO
2
. It exhibits a current density of 10.7 mA cm
−2
at the overpotential of − 0.26 V with a CO faradaic efficiency (FE) higher than 81%. The excellent photo-assisted catalytic performance (photo-induced current increment is more than 50%) is attributed to the localized surface plasmonic resonance of Cu
2
S coatings and highly ordered hierarchical structure of the Cu
2
O/Cu
2
S nanoparticles, which facilitate charge carrier separation and mass transfer. These hybrid electrodes demonstrate a long-term stability by resisting photocorrosion within 5 h with a higher FE of CO
2
to CO conversion. |
doi_str_mv | 10.1007/s10853-019-03615-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480896261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480896261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-5e36dc490a1f3447788a6a54bfb77b8f778ac494a07dc2062742418cf520696f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz3Xz1SQ9SvELhBVczyFNUzdLt1mTVKi_3mgFb15mmJn3fQceAC4xusYIiVXESJa0QLgqEOW4LNgRWOBS0IJJRI_BAiFCCsI4PgVnMe4QQqUgeAHs89Ynb3trUvBma_fO6B7WawKDbUeTnB9gM8F6JOtVLi9wOzXBtdDopPspJuj2e9-43n3aFroBbly2DnrwRn-4NEEdgp7iOTjpdB_txW9fgte72039UDyt7x_rm6fCEMlTUVrKW8MqpHFHGRNCSs11yZquEaKRXV7ofGYaidYQxIlghGFpujIPFe_oElzNuYfg30cbk9r5MQz5pSIZhKw44TiryKwywccYbKcOwe11mBRG6hunmnGqjFP94FQsm-hsilk8vNnwF_2P6wsZKHdO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480896261</pqid></control><display><type>article</type><title>Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays</title><source>SpringerNature Journals</source><creator>Guo, Limin ; Cao, Jinqing ; Zhang, Jiameng ; Hao, Yanan ; Bi, Ke</creator><creatorcontrib>Guo, Limin ; Cao, Jinqing ; Zhang, Jiameng ; Hao, Yanan ; Bi, Ke</creatorcontrib><description>Photoelectrocatalytic CO
2
reduction to CO was achieved on Cu
2
O/Cu
2
S nanoparticles which are immobilized in TiO
2
nanocavity array. The Cu
2
S shell was obtained by ions exchange reaction of O
2−
and S
2−
on the surface of Cu
2
O by a chemical vapor deposition with Na
2
S precursor. This coating can protect the Cu
2
O nanoparticle from photocorrosion during photocatalysis. The lower resistance and plasmonic absorbance endow a superior activity of the Cu
2
O/Cu
2
S heterostructures toward photoelectrochemical reduction of CO
2
. It exhibits a current density of 10.7 mA cm
−2
at the overpotential of − 0.26 V with a CO faradaic efficiency (FE) higher than 81%. The excellent photo-assisted catalytic performance (photo-induced current increment is more than 50%) is attributed to the localized surface plasmonic resonance of Cu
2
S coatings and highly ordered hierarchical structure of the Cu
2
O/Cu
2
S nanoparticles, which facilitate charge carrier separation and mass transfer. These hybrid electrodes demonstrate a long-term stability by resisting photocorrosion within 5 h with a higher FE of CO
2
to CO conversion.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03615-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arrays ; Carbon dioxide ; Carbon monoxide ; Characterization and Evaluation of Materials ; Chemical reduction ; Chemical vapor deposition ; Chemistry and Materials Science ; Classical Mechanics ; Copper oxides ; Copper sulfides ; Crystallography and Scattering Methods ; Current carriers ; Energy Materials ; Heterostructures ; Mass transfer ; Materials Science ; Nanoparticles ; Plasmonics ; Polymer Sciences ; Sodium sulfide ; Solid Mechanics ; Structural hierarchy ; Titanium dioxide</subject><ispartof>Journal of materials science, 2019-07, Vol.54 (14), p.10379-10388</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-5e36dc490a1f3447788a6a54bfb77b8f778ac494a07dc2062742418cf520696f3</citedby><cites>FETCH-LOGICAL-c286t-5e36dc490a1f3447788a6a54bfb77b8f778ac494a07dc2062742418cf520696f3</cites><orcidid>0000-0002-3357-5754 ; 0000-0001-6959-5661 ; 0000-0002-5743-135X ; 0000-0003-3609-3272 ; 0000-0001-9219-4209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03615-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03615-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Guo, Limin</creatorcontrib><creatorcontrib>Cao, Jinqing</creatorcontrib><creatorcontrib>Zhang, Jiameng</creatorcontrib><creatorcontrib>Hao, Yanan</creatorcontrib><creatorcontrib>Bi, Ke</creatorcontrib><title>Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Photoelectrocatalytic CO
2
reduction to CO was achieved on Cu
2
O/Cu
2
S nanoparticles which are immobilized in TiO
2
nanocavity array. The Cu
2
S shell was obtained by ions exchange reaction of O
2−
and S
2−
on the surface of Cu
2
O by a chemical vapor deposition with Na
2
S precursor. This coating can protect the Cu
2
O nanoparticle from photocorrosion during photocatalysis. The lower resistance and plasmonic absorbance endow a superior activity of the Cu
2
O/Cu
2
S heterostructures toward photoelectrochemical reduction of CO
2
. It exhibits a current density of 10.7 mA cm
−2
at the overpotential of − 0.26 V with a CO faradaic efficiency (FE) higher than 81%. The excellent photo-assisted catalytic performance (photo-induced current increment is more than 50%) is attributed to the localized surface plasmonic resonance of Cu
2
S coatings and highly ordered hierarchical structure of the Cu
2
O/Cu
2
S nanoparticles, which facilitate charge carrier separation and mass transfer. These hybrid electrodes demonstrate a long-term stability by resisting photocorrosion within 5 h with a higher FE of CO
2
to CO conversion.</description><subject>Arrays</subject><subject>Carbon dioxide</subject><subject>Carbon monoxide</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reduction</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Copper oxides</subject><subject>Copper sulfides</subject><subject>Crystallography and Scattering Methods</subject><subject>Current carriers</subject><subject>Energy Materials</subject><subject>Heterostructures</subject><subject>Mass transfer</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Plasmonics</subject><subject>Polymer Sciences</subject><subject>Sodium sulfide</subject><subject>Solid Mechanics</subject><subject>Structural hierarchy</subject><subject>Titanium dioxide</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz3Xz1SQ9SvELhBVczyFNUzdLt1mTVKi_3mgFb15mmJn3fQceAC4xusYIiVXESJa0QLgqEOW4LNgRWOBS0IJJRI_BAiFCCsI4PgVnMe4QQqUgeAHs89Ynb3trUvBma_fO6B7WawKDbUeTnB9gM8F6JOtVLi9wOzXBtdDopPspJuj2e9-43n3aFroBbly2DnrwRn-4NEEdgp7iOTjpdB_txW9fgte72039UDyt7x_rm6fCEMlTUVrKW8MqpHFHGRNCSs11yZquEaKRXV7ofGYaidYQxIlghGFpujIPFe_oElzNuYfg30cbk9r5MQz5pSIZhKw44TiryKwywccYbKcOwe11mBRG6hunmnGqjFP94FQsm-hsilk8vNnwF_2P6wsZKHdO</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Guo, Limin</creator><creator>Cao, Jinqing</creator><creator>Zhang, Jiameng</creator><creator>Hao, Yanan</creator><creator>Bi, Ke</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3357-5754</orcidid><orcidid>https://orcid.org/0000-0001-6959-5661</orcidid><orcidid>https://orcid.org/0000-0002-5743-135X</orcidid><orcidid>https://orcid.org/0000-0003-3609-3272</orcidid><orcidid>https://orcid.org/0000-0001-9219-4209</orcidid></search><sort><creationdate>20190701</creationdate><title>Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays</title><author>Guo, Limin ; Cao, Jinqing ; Zhang, Jiameng ; Hao, Yanan ; Bi, Ke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-5e36dc490a1f3447788a6a54bfb77b8f778ac494a07dc2062742418cf520696f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Carbon dioxide</topic><topic>Carbon monoxide</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reduction</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Copper oxides</topic><topic>Copper sulfides</topic><topic>Crystallography and Scattering Methods</topic><topic>Current carriers</topic><topic>Energy Materials</topic><topic>Heterostructures</topic><topic>Mass transfer</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Plasmonics</topic><topic>Polymer Sciences</topic><topic>Sodium sulfide</topic><topic>Solid Mechanics</topic><topic>Structural hierarchy</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Limin</creatorcontrib><creatorcontrib>Cao, Jinqing</creatorcontrib><creatorcontrib>Zhang, Jiameng</creatorcontrib><creatorcontrib>Hao, Yanan</creatorcontrib><creatorcontrib>Bi, Ke</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Limin</au><au>Cao, Jinqing</au><au>Zhang, Jiameng</au><au>Hao, Yanan</au><au>Bi, Ke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>54</volume><issue>14</issue><spage>10379</spage><epage>10388</epage><pages>10379-10388</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Photoelectrocatalytic CO
2
reduction to CO was achieved on Cu
2
O/Cu
2
S nanoparticles which are immobilized in TiO
2
nanocavity array. The Cu
2
S shell was obtained by ions exchange reaction of O
2−
and S
2−
on the surface of Cu
2
O by a chemical vapor deposition with Na
2
S precursor. This coating can protect the Cu
2
O nanoparticle from photocorrosion during photocatalysis. The lower resistance and plasmonic absorbance endow a superior activity of the Cu
2
O/Cu
2
S heterostructures toward photoelectrochemical reduction of CO
2
. It exhibits a current density of 10.7 mA cm
−2
at the overpotential of − 0.26 V with a CO faradaic efficiency (FE) higher than 81%. The excellent photo-assisted catalytic performance (photo-induced current increment is more than 50%) is attributed to the localized surface plasmonic resonance of Cu
2
S coatings and highly ordered hierarchical structure of the Cu
2
O/Cu
2
S nanoparticles, which facilitate charge carrier separation and mass transfer. These hybrid electrodes demonstrate a long-term stability by resisting photocorrosion within 5 h with a higher FE of CO
2
to CO conversion.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03615-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3357-5754</orcidid><orcidid>https://orcid.org/0000-0001-6959-5661</orcidid><orcidid>https://orcid.org/0000-0002-5743-135X</orcidid><orcidid>https://orcid.org/0000-0003-3609-3272</orcidid><orcidid>https://orcid.org/0000-0001-9219-4209</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-07, Vol.54 (14), p.10379-10388 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2480896261 |
source | SpringerNature Journals |
subjects | Arrays Carbon dioxide Carbon monoxide Characterization and Evaluation of Materials Chemical reduction Chemical vapor deposition Chemistry and Materials Science Classical Mechanics Copper oxides Copper sulfides Crystallography and Scattering Methods Current carriers Energy Materials Heterostructures Mass transfer Materials Science Nanoparticles Plasmonics Polymer Sciences Sodium sulfide Solid Mechanics Structural hierarchy Titanium dioxide |
title | Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T22%3A03%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrochemical%20CO2%20reduction%20by%20Cu2O/Cu2S%20hybrid%20catalyst%20immobilized%20in%20TiO2%20nanocavity%20arrays&rft.jtitle=Journal%20of%20materials%20science&rft.au=Guo,%20Limin&rft.date=2019-07-01&rft.volume=54&rft.issue=14&rft.spage=10379&rft.epage=10388&rft.pages=10379-10388&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03615-4&rft_dat=%3Cproquest_cross%3E2480896261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480896261&rft_id=info:pmid/&rfr_iscdi=true |