Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit

Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-06, Vol.54 (12), p.9049-9062
Hauptverfasser: Wang, Teng, Wang, Hongchao, Su, Wenbin, Zhai, Jinze, Wang, Xue, Chen, Tingting, Wang, Chunlei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9062
container_issue 12
container_start_page 9049
container_title Journal of materials science
container_volume 54
creator Wang, Teng
Wang, Hongchao
Su, Wenbin
Zhai, Jinze
Wang, Xue
Chen, Tingting
Wang, Chunlei
description Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been enhanced by synergistic effect based on resonant levels and increased carrier effective mass especially at low and middle temperature range, and then, the power factor is enlarged. With the reduced electrical and lattice thermal conductivity via co-doping, the total thermal conductivity is decreased. Intrinsic point defect and more grain boundaries lead to reduction in the lattice thermal conductivity through the co-doping. In addition, as the doping level is near the solubility limit, the 200–600 nm, In-rich precipitations have been detected in Sn 0.848 Sb 0.14 In 0.012 Te alloy, which can further reduce the lattice thermal conductivity. Thus, the lowest lattice thermal conductivity of 0.96 W m −1  K −1 is obtained at 800 K. Finally, the maximum figure of merit zT of ~ 0.8 at 800 K has been obtained for Sn 0.848 Sb 0.14 In 0.012 Te alloy, and a relative high average zT of ~ 0.45 in 300–800 K is achieved due to the zT improvement in the low and middle temperature range which indicated that SnTe is a promising candidate for the thermoelectric application.
doi_str_mv 10.1007/s10853-019-03502-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480896168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580262227</galeid><sourcerecordid>A580262227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-874cda5312cb6e1545edbdf16e3b957fe49bebd4ed1c8bd598e668002ab1f5ad3</originalsourceid><addsrcrecordid>eNp9kUuLFDEURgtRsB39A64CrlxkzKNSj-Uw-GgYEOx2HfO46cmQStokjda_N1qCzEbuInA5J7k3X9e9puSaEjK-K5RMgmNCZ0y4IAyvT7odFSPH_UT4025HCGOY9QN93r0o5YEQIkZGd9234z3kJUEAU7M36AzZpbyoaAAlhw7xCEiFkNaCfvh6j_YRqWjRQSOTsE1nsCiCyshkX71RAZUULtoHX1cU_OLry-6ZU6HAq7_nVff1w_vj7Sd89_nj_vbmDhs-s4qnsTdWCU6Z0QNQ0Quw2jo6ANezGB30swZte7DUTNqKeYJhmNpWSlMnlOVX3Zvt3nNO3y9QqnxIlxzbk5K1P5jmgQ5To6436qQCSB9dqlmZVhYWb1IE51v_RkyEDYyxsQlvHwmNqfCzntSlFLk_fHnMso01OZWSwclz9ovKq6RE_o5JbjHJFpP8E5Ncm8Q3qTQ4niD_m_s_1i-FcJXz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480896168</pqid></control><display><type>article</type><title>Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Teng ; Wang, Hongchao ; Su, Wenbin ; Zhai, Jinze ; Wang, Xue ; Chen, Tingting ; Wang, Chunlei</creator><creatorcontrib>Wang, Teng ; Wang, Hongchao ; Su, Wenbin ; Zhai, Jinze ; Wang, Xue ; Chen, Tingting ; Wang, Chunlei</creatorcontrib><description>Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been enhanced by synergistic effect based on resonant levels and increased carrier effective mass especially at low and middle temperature range, and then, the power factor is enlarged. With the reduced electrical and lattice thermal conductivity via co-doping, the total thermal conductivity is decreased. Intrinsic point defect and more grain boundaries lead to reduction in the lattice thermal conductivity through the co-doping. In addition, as the doping level is near the solubility limit, the 200–600 nm, In-rich precipitations have been detected in Sn 0.848 Sb 0.14 In 0.012 Te alloy, which can further reduce the lattice thermal conductivity. Thus, the lowest lattice thermal conductivity of 0.96 W m −1  K −1 is obtained at 800 K. Finally, the maximum figure of merit zT of ~ 0.8 at 800 K has been obtained for Sn 0.848 Sb 0.14 In 0.012 Te alloy, and a relative high average zT of ~ 0.45 in 300–800 K is achieved due to the zT improvement in the low and middle temperature range which indicated that SnTe is a promising candidate for the thermoelectric application.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03502-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Degassing of metals ; Doping ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Energy Materials ; Figure of merit ; Grain boundaries ; Heat conductivity ; Heat transfer ; Lead free ; Materials Science ; Metals ; Plasma sintering ; Point defects ; Polymer Sciences ; Power factor ; Seebeck effect ; Solid Mechanics ; Solubility ; Spark plasma sintering ; Specialty metals industry ; Synergistic effect ; Thermal conductivity ; Thermoelectric materials ; Thermoelectricity ; Tin tellurides ; Waste heat recovery</subject><ispartof>Journal of materials science, 2019-06, Vol.54 (12), p.9049-9062</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-874cda5312cb6e1545edbdf16e3b957fe49bebd4ed1c8bd598e668002ab1f5ad3</citedby><cites>FETCH-LOGICAL-c392t-874cda5312cb6e1545edbdf16e3b957fe49bebd4ed1c8bd598e668002ab1f5ad3</cites><orcidid>0000-0001-8731-9986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03502-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03502-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Wang, Hongchao</creatorcontrib><creatorcontrib>Su, Wenbin</creatorcontrib><creatorcontrib>Zhai, Jinze</creatorcontrib><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><title>Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been enhanced by synergistic effect based on resonant levels and increased carrier effective mass especially at low and middle temperature range, and then, the power factor is enlarged. With the reduced electrical and lattice thermal conductivity via co-doping, the total thermal conductivity is decreased. Intrinsic point defect and more grain boundaries lead to reduction in the lattice thermal conductivity through the co-doping. In addition, as the doping level is near the solubility limit, the 200–600 nm, In-rich precipitations have been detected in Sn 0.848 Sb 0.14 In 0.012 Te alloy, which can further reduce the lattice thermal conductivity. Thus, the lowest lattice thermal conductivity of 0.96 W m −1  K −1 is obtained at 800 K. Finally, the maximum figure of merit zT of ~ 0.8 at 800 K has been obtained for Sn 0.848 Sb 0.14 In 0.012 Te alloy, and a relative high average zT of ~ 0.45 in 300–800 K is achieved due to the zT improvement in the low and middle temperature range which indicated that SnTe is a promising candidate for the thermoelectric application.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Degassing of metals</subject><subject>Doping</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy Materials</subject><subject>Figure of merit</subject><subject>Grain boundaries</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lead free</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Plasma sintering</subject><subject>Point defects</subject><subject>Polymer Sciences</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Solid Mechanics</subject><subject>Solubility</subject><subject>Spark plasma sintering</subject><subject>Specialty metals industry</subject><subject>Synergistic effect</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Tin tellurides</subject><subject>Waste heat recovery</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUuLFDEURgtRsB39A64CrlxkzKNSj-Uw-GgYEOx2HfO46cmQStokjda_N1qCzEbuInA5J7k3X9e9puSaEjK-K5RMgmNCZ0y4IAyvT7odFSPH_UT4025HCGOY9QN93r0o5YEQIkZGd9234z3kJUEAU7M36AzZpbyoaAAlhw7xCEiFkNaCfvh6j_YRqWjRQSOTsE1nsCiCyshkX71RAZUULtoHX1cU_OLry-6ZU6HAq7_nVff1w_vj7Sd89_nj_vbmDhs-s4qnsTdWCU6Z0QNQ0Quw2jo6ANezGB30swZte7DUTNqKeYJhmNpWSlMnlOVX3Zvt3nNO3y9QqnxIlxzbk5K1P5jmgQ5To6436qQCSB9dqlmZVhYWb1IE51v_RkyEDYyxsQlvHwmNqfCzntSlFLk_fHnMso01OZWSwclz9ovKq6RE_o5JbjHJFpP8E5Ncm8Q3qTQ4niD_m_s_1i-FcJXz</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wang, Teng</creator><creator>Wang, Hongchao</creator><creator>Su, Wenbin</creator><creator>Zhai, Jinze</creator><creator>Wang, Xue</creator><creator>Chen, Tingting</creator><creator>Wang, Chunlei</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8731-9986</orcidid></search><sort><creationdate>20190601</creationdate><title>Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit</title><author>Wang, Teng ; Wang, Hongchao ; Su, Wenbin ; Zhai, Jinze ; Wang, Xue ; Chen, Tingting ; Wang, Chunlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-874cda5312cb6e1545edbdf16e3b957fe49bebd4ed1c8bd598e668002ab1f5ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Degassing of metals</topic><topic>Doping</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy Materials</topic><topic>Figure of merit</topic><topic>Grain boundaries</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lead free</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Plasma sintering</topic><topic>Point defects</topic><topic>Polymer Sciences</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Solid Mechanics</topic><topic>Solubility</topic><topic>Spark plasma sintering</topic><topic>Specialty metals industry</topic><topic>Synergistic effect</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Tin tellurides</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Wang, Hongchao</creatorcontrib><creatorcontrib>Su, Wenbin</creatorcontrib><creatorcontrib>Zhai, Jinze</creatorcontrib><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Teng</au><au>Wang, Hongchao</au><au>Su, Wenbin</au><au>Zhai, Jinze</au><au>Wang, Xue</au><au>Chen, Tingting</au><au>Wang, Chunlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>54</volume><issue>12</issue><spage>9049</spage><epage>9062</epage><pages>9049-9062</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been enhanced by synergistic effect based on resonant levels and increased carrier effective mass especially at low and middle temperature range, and then, the power factor is enlarged. With the reduced electrical and lattice thermal conductivity via co-doping, the total thermal conductivity is decreased. Intrinsic point defect and more grain boundaries lead to reduction in the lattice thermal conductivity through the co-doping. In addition, as the doping level is near the solubility limit, the 200–600 nm, In-rich precipitations have been detected in Sn 0.848 Sb 0.14 In 0.012 Te alloy, which can further reduce the lattice thermal conductivity. Thus, the lowest lattice thermal conductivity of 0.96 W m −1  K −1 is obtained at 800 K. Finally, the maximum figure of merit zT of ~ 0.8 at 800 K has been obtained for Sn 0.848 Sb 0.14 In 0.012 Te alloy, and a relative high average zT of ~ 0.45 in 300–800 K is achieved due to the zT improvement in the low and middle temperature range which indicated that SnTe is a promising candidate for the thermoelectric application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03502-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8731-9986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-06, Vol.54 (12), p.9049-9062
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2480896168
source SpringerLink Journals - AutoHoldings
subjects Alloys
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Degassing of metals
Doping
Electric properties
Electrical conductivity
Electrical resistivity
Energy Materials
Figure of merit
Grain boundaries
Heat conductivity
Heat transfer
Lead free
Materials Science
Metals
Plasma sintering
Point defects
Polymer Sciences
Power factor
Seebeck effect
Solid Mechanics
Solubility
Spark plasma sintering
Specialty metals industry
Synergistic effect
Thermal conductivity
Thermoelectric materials
Thermoelectricity
Tin tellurides
Waste heat recovery
title Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20performance%20of%20SnTe%20alloys%20with%20In%20and%20Sb%20co-doped%20near%20critical%20solubility%20limit&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Teng&rft.date=2019-06-01&rft.volume=54&rft.issue=12&rft.spage=9049&rft.epage=9062&rft.pages=9049-9062&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03502-y&rft_dat=%3Cgale_proqu%3EA580262227%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480896168&rft_id=info:pmid/&rft_galeid=A580262227&rfr_iscdi=true