Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit
Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been e...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-06, Vol.54 (12), p.9049-9062 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9062 |
---|---|
container_issue | 12 |
container_start_page | 9049 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Wang, Teng Wang, Hongchao Su, Wenbin Zhai, Jinze Wang, Xue Chen, Tingting Wang, Chunlei |
description | Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been enhanced by synergistic effect based on resonant levels and increased carrier effective mass especially at low and middle temperature range, and then, the power factor is enlarged. With the reduced electrical and lattice thermal conductivity via co-doping, the total thermal conductivity is decreased. Intrinsic point defect and more grain boundaries lead to reduction in the lattice thermal conductivity through the co-doping. In addition, as the doping level is near the solubility limit, the 200–600 nm, In-rich precipitations have been detected in Sn
0.848
Sb
0.14
In
0.012
Te alloy, which can further reduce the lattice thermal conductivity. Thus, the lowest lattice thermal conductivity of 0.96 W m
−1
K
−1
is obtained at 800 K. Finally, the maximum figure of merit
zT
of ~ 0.8 at 800 K has been obtained for Sn
0.848
Sb
0.14
In
0.012
Te alloy, and a relative high average
zT
of ~ 0.45 in 300–800 K is achieved due to the
zT
improvement in the low and middle temperature range which indicated that SnTe is a promising candidate for the thermoelectric application. |
doi_str_mv | 10.1007/s10853-019-03502-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480896168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580262227</galeid><sourcerecordid>A580262227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-874cda5312cb6e1545edbdf16e3b957fe49bebd4ed1c8bd598e668002ab1f5ad3</originalsourceid><addsrcrecordid>eNp9kUuLFDEURgtRsB39A64CrlxkzKNSj-Uw-GgYEOx2HfO46cmQStokjda_N1qCzEbuInA5J7k3X9e9puSaEjK-K5RMgmNCZ0y4IAyvT7odFSPH_UT4025HCGOY9QN93r0o5YEQIkZGd9234z3kJUEAU7M36AzZpbyoaAAlhw7xCEiFkNaCfvh6j_YRqWjRQSOTsE1nsCiCyshkX71RAZUULtoHX1cU_OLry-6ZU6HAq7_nVff1w_vj7Sd89_nj_vbmDhs-s4qnsTdWCU6Z0QNQ0Quw2jo6ANezGB30swZte7DUTNqKeYJhmNpWSlMnlOVX3Zvt3nNO3y9QqnxIlxzbk5K1P5jmgQ5To6436qQCSB9dqlmZVhYWb1IE51v_RkyEDYyxsQlvHwmNqfCzntSlFLk_fHnMso01OZWSwclz9ovKq6RE_o5JbjHJFpP8E5Ncm8Q3qTQ4niD_m_s_1i-FcJXz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480896168</pqid></control><display><type>article</type><title>Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Teng ; Wang, Hongchao ; Su, Wenbin ; Zhai, Jinze ; Wang, Xue ; Chen, Tingting ; Wang, Chunlei</creator><creatorcontrib>Wang, Teng ; Wang, Hongchao ; Su, Wenbin ; Zhai, Jinze ; Wang, Xue ; Chen, Tingting ; Wang, Chunlei</creatorcontrib><description>Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been enhanced by synergistic effect based on resonant levels and increased carrier effective mass especially at low and middle temperature range, and then, the power factor is enlarged. With the reduced electrical and lattice thermal conductivity via co-doping, the total thermal conductivity is decreased. Intrinsic point defect and more grain boundaries lead to reduction in the lattice thermal conductivity through the co-doping. In addition, as the doping level is near the solubility limit, the 200–600 nm, In-rich precipitations have been detected in Sn
0.848
Sb
0.14
In
0.012
Te alloy, which can further reduce the lattice thermal conductivity. Thus, the lowest lattice thermal conductivity of 0.96 W m
−1
K
−1
is obtained at 800 K. Finally, the maximum figure of merit
zT
of ~ 0.8 at 800 K has been obtained for Sn
0.848
Sb
0.14
In
0.012
Te alloy, and a relative high average
zT
of ~ 0.45 in 300–800 K is achieved due to the
zT
improvement in the low and middle temperature range which indicated that SnTe is a promising candidate for the thermoelectric application.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03502-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Degassing of metals ; Doping ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Energy Materials ; Figure of merit ; Grain boundaries ; Heat conductivity ; Heat transfer ; Lead free ; Materials Science ; Metals ; Plasma sintering ; Point defects ; Polymer Sciences ; Power factor ; Seebeck effect ; Solid Mechanics ; Solubility ; Spark plasma sintering ; Specialty metals industry ; Synergistic effect ; Thermal conductivity ; Thermoelectric materials ; Thermoelectricity ; Tin tellurides ; Waste heat recovery</subject><ispartof>Journal of materials science, 2019-06, Vol.54 (12), p.9049-9062</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-874cda5312cb6e1545edbdf16e3b957fe49bebd4ed1c8bd598e668002ab1f5ad3</citedby><cites>FETCH-LOGICAL-c392t-874cda5312cb6e1545edbdf16e3b957fe49bebd4ed1c8bd598e668002ab1f5ad3</cites><orcidid>0000-0001-8731-9986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03502-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03502-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Wang, Hongchao</creatorcontrib><creatorcontrib>Su, Wenbin</creatorcontrib><creatorcontrib>Zhai, Jinze</creatorcontrib><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><title>Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been enhanced by synergistic effect based on resonant levels and increased carrier effective mass especially at low and middle temperature range, and then, the power factor is enlarged. With the reduced electrical and lattice thermal conductivity via co-doping, the total thermal conductivity is decreased. Intrinsic point defect and more grain boundaries lead to reduction in the lattice thermal conductivity through the co-doping. In addition, as the doping level is near the solubility limit, the 200–600 nm, In-rich precipitations have been detected in Sn
0.848
Sb
0.14
In
0.012
Te alloy, which can further reduce the lattice thermal conductivity. Thus, the lowest lattice thermal conductivity of 0.96 W m
−1
K
−1
is obtained at 800 K. Finally, the maximum figure of merit
zT
of ~ 0.8 at 800 K has been obtained for Sn
0.848
Sb
0.14
In
0.012
Te alloy, and a relative high average
zT
of ~ 0.45 in 300–800 K is achieved due to the
zT
improvement in the low and middle temperature range which indicated that SnTe is a promising candidate for the thermoelectric application.</description><subject>Alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Degassing of metals</subject><subject>Doping</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy Materials</subject><subject>Figure of merit</subject><subject>Grain boundaries</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lead free</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Plasma sintering</subject><subject>Point defects</subject><subject>Polymer Sciences</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Solid Mechanics</subject><subject>Solubility</subject><subject>Spark plasma sintering</subject><subject>Specialty metals industry</subject><subject>Synergistic effect</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Tin tellurides</subject><subject>Waste heat recovery</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kUuLFDEURgtRsB39A64CrlxkzKNSj-Uw-GgYEOx2HfO46cmQStokjda_N1qCzEbuInA5J7k3X9e9puSaEjK-K5RMgmNCZ0y4IAyvT7odFSPH_UT4025HCGOY9QN93r0o5YEQIkZGd9234z3kJUEAU7M36AzZpbyoaAAlhw7xCEiFkNaCfvh6j_YRqWjRQSOTsE1nsCiCyshkX71RAZUULtoHX1cU_OLry-6ZU6HAq7_nVff1w_vj7Sd89_nj_vbmDhs-s4qnsTdWCU6Z0QNQ0Quw2jo6ANezGB30swZte7DUTNqKeYJhmNpWSlMnlOVX3Zvt3nNO3y9QqnxIlxzbk5K1P5jmgQ5To6436qQCSB9dqlmZVhYWb1IE51v_RkyEDYyxsQlvHwmNqfCzntSlFLk_fHnMso01OZWSwclz9ovKq6RE_o5JbjHJFpP8E5Ncm8Q3qTQ4niD_m_s_1i-FcJXz</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wang, Teng</creator><creator>Wang, Hongchao</creator><creator>Su, Wenbin</creator><creator>Zhai, Jinze</creator><creator>Wang, Xue</creator><creator>Chen, Tingting</creator><creator>Wang, Chunlei</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8731-9986</orcidid></search><sort><creationdate>20190601</creationdate><title>Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit</title><author>Wang, Teng ; Wang, Hongchao ; Su, Wenbin ; Zhai, Jinze ; Wang, Xue ; Chen, Tingting ; Wang, Chunlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-874cda5312cb6e1545edbdf16e3b957fe49bebd4ed1c8bd598e668002ab1f5ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Degassing of metals</topic><topic>Doping</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy Materials</topic><topic>Figure of merit</topic><topic>Grain boundaries</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lead free</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Plasma sintering</topic><topic>Point defects</topic><topic>Polymer Sciences</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Solid Mechanics</topic><topic>Solubility</topic><topic>Spark plasma sintering</topic><topic>Specialty metals industry</topic><topic>Synergistic effect</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Tin tellurides</topic><topic>Waste heat recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Teng</creatorcontrib><creatorcontrib>Wang, Hongchao</creatorcontrib><creatorcontrib>Su, Wenbin</creatorcontrib><creatorcontrib>Zhai, Jinze</creatorcontrib><creatorcontrib>Wang, Xue</creatorcontrib><creatorcontrib>Chen, Tingting</creatorcontrib><creatorcontrib>Wang, Chunlei</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Teng</au><au>Wang, Hongchao</au><au>Su, Wenbin</au><au>Zhai, Jinze</au><au>Wang, Xue</au><au>Chen, Tingting</au><au>Wang, Chunlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>54</volume><issue>12</issue><spage>9049</spage><epage>9062</epage><pages>9049-9062</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Lead-free tin telluride (SnTe) has been viewed as one promising solid thermoelectric material for recovering waste heat in recent years. In this work, SnTe alloys doped with excessive In and Sb have been synthesized by melting, quenching and spark plasma sintering. The Seebeck coefficient has been enhanced by synergistic effect based on resonant levels and increased carrier effective mass especially at low and middle temperature range, and then, the power factor is enlarged. With the reduced electrical and lattice thermal conductivity via co-doping, the total thermal conductivity is decreased. Intrinsic point defect and more grain boundaries lead to reduction in the lattice thermal conductivity through the co-doping. In addition, as the doping level is near the solubility limit, the 200–600 nm, In-rich precipitations have been detected in Sn
0.848
Sb
0.14
In
0.012
Te alloy, which can further reduce the lattice thermal conductivity. Thus, the lowest lattice thermal conductivity of 0.96 W m
−1
K
−1
is obtained at 800 K. Finally, the maximum figure of merit
zT
of ~ 0.8 at 800 K has been obtained for Sn
0.848
Sb
0.14
In
0.012
Te alloy, and a relative high average
zT
of ~ 0.45 in 300–800 K is achieved due to the
zT
improvement in the low and middle temperature range which indicated that SnTe is a promising candidate for the thermoelectric application.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03502-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8731-9986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-06, Vol.54 (12), p.9049-9062 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2480896168 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystallography and Scattering Methods Degassing of metals Doping Electric properties Electrical conductivity Electrical resistivity Energy Materials Figure of merit Grain boundaries Heat conductivity Heat transfer Lead free Materials Science Metals Plasma sintering Point defects Polymer Sciences Power factor Seebeck effect Solid Mechanics Solubility Spark plasma sintering Specialty metals industry Synergistic effect Thermal conductivity Thermoelectric materials Thermoelectricity Tin tellurides Waste heat recovery |
title | Thermoelectric performance of SnTe alloys with In and Sb co-doped near critical solubility limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20performance%20of%20SnTe%20alloys%20with%20In%20and%20Sb%20co-doped%20near%20critical%20solubility%20limit&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Teng&rft.date=2019-06-01&rft.volume=54&rft.issue=12&rft.spage=9049&rft.epage=9062&rft.pages=9049-9062&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03502-y&rft_dat=%3Cgale_proqu%3EA580262227%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480896168&rft_id=info:pmid/&rft_galeid=A580262227&rfr_iscdi=true |