A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region

Thermal compression tests of (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 bulk metallic glass (BMG) were performed at temperature of 410, 420, 430 and 440 °C and strain rates of 5 × 10 −4 , 10 −3 , 5 × 10 −3 and 10 −2  s −1 , and a thermal processing map was constructed in the supercooled li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-05, Vol.54 (9), p.7246-7255
Hauptverfasser: Li, Chunyan, Yin, Jinfeng, Ding, Juanqiang, Zhu, Fuping, Xu, Fei, Zhao, Yanchun, Kou, Shengzhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7255
container_issue 9
container_start_page 7246
container_title Journal of materials science
container_volume 54
creator Li, Chunyan
Yin, Jinfeng
Ding, Juanqiang
Zhu, Fuping
Xu, Fei
Zhao, Yanchun
Kou, Shengzhong
description Thermal compression tests of (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 bulk metallic glass (BMG) were performed at temperature of 410, 420, 430 and 440 °C and strain rates of 5 × 10 −4 , 10 −3 , 5 × 10 −3 and 10 −2  s −1 , and a thermal processing map was constructed in the supercooled liquid region. The results indicate that in low strain rate regions (5 × 10 −4 –10 −3  s −1 ), the processing efficiency range is 70–85% and stress range is 70–120 MPa with temperatures of 410 and 420 °C, and the samples can be thermally processed under relatively small stress and show better fluidity, so temperatures of 410 and 420 °C and the strain rate range of 5 × 10 −4 –10 −3  s −1 are optional thermal processing parameters. When the temperature is 430 °C and the strain rate range is 5 × 10 −4 –10 −2  s −1 , the processing efficiency range is 75–85%, and the stress range is 16–106 MPa. The (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 BMG can be thermoformed under smaller flow stress and shows excellent fluidity; therefore, 430 °C and 5 × 10 −4 –10 −2  s −1 also are optional thermal processing parameters.
doi_str_mv 10.1007/s10853-019-03363-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480895552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573937318</galeid><sourcerecordid>A573937318</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-ccbc2561b8dc15303ba1969c8f95881106a68a85b2cb2b1b7c2d9a9900b86fa43</originalsourceid><addsrcrecordid>eNp9kc9rHCEUx6Uk0G3Sf6AnoaceJnnqOqPHZUnTwJJCflwCRdRxpm6ccaMzkP73NZ1AySV4EOTzee_5vgh9IXBGAJrzTEBwVgGRFTBWs4p_QCvCG1atBbAjtAKgtKLrmnxEn3LeAwBvKFmhXxs8_XZp0AEfUrQuZz_2eNAHHDus8UPaztd-Ey4SNnN4xIObdAje4j7onLEfX2yc54NLNsbgWhz80-xbnFzv43iKjjsdsvv8ep-g--8Xd9sf1e7n5dV2s6ssk3SqrDWW8poY0VrCGTCjiaylFZ3kQhACta6FFtxQa6ghprG0lVpKACPqTq_ZCfq61C1_eJpdntQ-zmksLRUtCxCSc04LdbZQvQ5O-bGLU9K2nNYN3sbRdb68b8rWJGsYEUX49kYozOSep17POaur25u3LF1Ym2LOyXXqkPyg0x9FQL1kpJaMVMlI_ctI8SKxRcoFHnuX_s_9jvUXGHWSoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480895552</pqid></control><display><type>article</type><title>A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region</title><source>SpringerNature Journals</source><creator>Li, Chunyan ; Yin, Jinfeng ; Ding, Juanqiang ; Zhu, Fuping ; Xu, Fei ; Zhao, Yanchun ; Kou, Shengzhong</creator><creatorcontrib>Li, Chunyan ; Yin, Jinfeng ; Ding, Juanqiang ; Zhu, Fuping ; Xu, Fei ; Zhao, Yanchun ; Kou, Shengzhong</creatorcontrib><description>Thermal compression tests of (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 bulk metallic glass (BMG) were performed at temperature of 410, 420, 430 and 440 °C and strain rates of 5 × 10 −4 , 10 −3 , 5 × 10 −3 and 10 −2  s −1 , and a thermal processing map was constructed in the supercooled liquid region. The results indicate that in low strain rate regions (5 × 10 −4 –10 −3  s −1 ), the processing efficiency range is 70–85% and stress range is 70–120 MPa with temperatures of 410 and 420 °C, and the samples can be thermally processed under relatively small stress and show better fluidity, so temperatures of 410 and 420 °C and the strain rate range of 5 × 10 −4 –10 −3  s −1 are optional thermal processing parameters. When the temperature is 430 °C and the strain rate range is 5 × 10 −4 –10 −2  s −1 , the processing efficiency range is 75–85%, and the stress range is 16–106 MPa. The (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 BMG can be thermoformed under smaller flow stress and shows excellent fluidity; therefore, 430 °C and 5 × 10 −4 –10 −2  s −1 also are optional thermal processing parameters.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03363-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Amorphous materials ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compression tests ; Crystallography and Scattering Methods ; Materials Science ; Metallic glasses ; Metals ; Polymer Sciences ; Process mapping ; Process parameters ; Solid Mechanics ; Strain rate ; Viscosity ; Yield strength</subject><ispartof>Journal of materials science, 2019-05, Vol.54 (9), p.7246-7255</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-ccbc2561b8dc15303ba1969c8f95881106a68a85b2cb2b1b7c2d9a9900b86fa43</citedby><cites>FETCH-LOGICAL-c392t-ccbc2561b8dc15303ba1969c8f95881106a68a85b2cb2b1b7c2d9a9900b86fa43</cites><orcidid>0000-0002-7540-4558 ; 0000-0002-2726-3965 ; 0000-0003-1863-0062 ; 0000-0002-2841-5780 ; 0000-0002-0143-7939 ; 0000-0002-9347-5202 ; 0000-0003-0332-7140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03363-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03363-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Yin, Jinfeng</creatorcontrib><creatorcontrib>Ding, Juanqiang</creatorcontrib><creatorcontrib>Zhu, Fuping</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Zhao, Yanchun</creatorcontrib><creatorcontrib>Kou, Shengzhong</creatorcontrib><title>A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Thermal compression tests of (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 bulk metallic glass (BMG) were performed at temperature of 410, 420, 430 and 440 °C and strain rates of 5 × 10 −4 , 10 −3 , 5 × 10 −3 and 10 −2  s −1 , and a thermal processing map was constructed in the supercooled liquid region. The results indicate that in low strain rate regions (5 × 10 −4 –10 −3  s −1 ), the processing efficiency range is 70–85% and stress range is 70–120 MPa with temperatures of 410 and 420 °C, and the samples can be thermally processed under relatively small stress and show better fluidity, so temperatures of 410 and 420 °C and the strain rate range of 5 × 10 −4 –10 −3  s −1 are optional thermal processing parameters. When the temperature is 430 °C and the strain rate range is 5 × 10 −4 –10 −2  s −1 , the processing efficiency range is 75–85%, and the stress range is 16–106 MPa. The (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 BMG can be thermoformed under smaller flow stress and shows excellent fluidity; therefore, 430 °C and 5 × 10 −4 –10 −2  s −1 also are optional thermal processing parameters.</description><subject>Amorphous materials</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compression tests</subject><subject>Crystallography and Scattering Methods</subject><subject>Materials Science</subject><subject>Metallic glasses</subject><subject>Metals</subject><subject>Polymer Sciences</subject><subject>Process mapping</subject><subject>Process parameters</subject><subject>Solid Mechanics</subject><subject>Strain rate</subject><subject>Viscosity</subject><subject>Yield strength</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc9rHCEUx6Uk0G3Sf6AnoaceJnnqOqPHZUnTwJJCflwCRdRxpm6ccaMzkP73NZ1AySV4EOTzee_5vgh9IXBGAJrzTEBwVgGRFTBWs4p_QCvCG1atBbAjtAKgtKLrmnxEn3LeAwBvKFmhXxs8_XZp0AEfUrQuZz_2eNAHHDus8UPaztd-Ey4SNnN4xIObdAje4j7onLEfX2yc54NLNsbgWhz80-xbnFzv43iKjjsdsvv8ep-g--8Xd9sf1e7n5dV2s6ssk3SqrDWW8poY0VrCGTCjiaylFZ3kQhACta6FFtxQa6ghprG0lVpKACPqTq_ZCfq61C1_eJpdntQ-zmksLRUtCxCSc04LdbZQvQ5O-bGLU9K2nNYN3sbRdb68b8rWJGsYEUX49kYozOSep17POaur25u3LF1Ym2LOyXXqkPyg0x9FQL1kpJaMVMlI_ctI8SKxRcoFHnuX_s_9jvUXGHWSoA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Li, Chunyan</creator><creator>Yin, Jinfeng</creator><creator>Ding, Juanqiang</creator><creator>Zhu, Fuping</creator><creator>Xu, Fei</creator><creator>Zhao, Yanchun</creator><creator>Kou, Shengzhong</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7540-4558</orcidid><orcidid>https://orcid.org/0000-0002-2726-3965</orcidid><orcidid>https://orcid.org/0000-0003-1863-0062</orcidid><orcidid>https://orcid.org/0000-0002-2841-5780</orcidid><orcidid>https://orcid.org/0000-0002-0143-7939</orcidid><orcidid>https://orcid.org/0000-0002-9347-5202</orcidid><orcidid>https://orcid.org/0000-0003-0332-7140</orcidid></search><sort><creationdate>20190501</creationdate><title>A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region</title><author>Li, Chunyan ; Yin, Jinfeng ; Ding, Juanqiang ; Zhu, Fuping ; Xu, Fei ; Zhao, Yanchun ; Kou, Shengzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-ccbc2561b8dc15303ba1969c8f95881106a68a85b2cb2b1b7c2d9a9900b86fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amorphous materials</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compression tests</topic><topic>Crystallography and Scattering Methods</topic><topic>Materials Science</topic><topic>Metallic glasses</topic><topic>Metals</topic><topic>Polymer Sciences</topic><topic>Process mapping</topic><topic>Process parameters</topic><topic>Solid Mechanics</topic><topic>Strain rate</topic><topic>Viscosity</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chunyan</creatorcontrib><creatorcontrib>Yin, Jinfeng</creatorcontrib><creatorcontrib>Ding, Juanqiang</creatorcontrib><creatorcontrib>Zhu, Fuping</creatorcontrib><creatorcontrib>Xu, Fei</creatorcontrib><creatorcontrib>Zhao, Yanchun</creatorcontrib><creatorcontrib>Kou, Shengzhong</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chunyan</au><au>Yin, Jinfeng</au><au>Ding, Juanqiang</au><au>Zhu, Fuping</au><au>Xu, Fei</au><au>Zhao, Yanchun</au><au>Kou, Shengzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>54</volume><issue>9</issue><spage>7246</spage><epage>7255</epage><pages>7246-7255</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Thermal compression tests of (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 bulk metallic glass (BMG) were performed at temperature of 410, 420, 430 and 440 °C and strain rates of 5 × 10 −4 , 10 −3 , 5 × 10 −3 and 10 −2  s −1 , and a thermal processing map was constructed in the supercooled liquid region. The results indicate that in low strain rate regions (5 × 10 −4 –10 −3  s −1 ), the processing efficiency range is 70–85% and stress range is 70–120 MPa with temperatures of 410 and 420 °C, and the samples can be thermally processed under relatively small stress and show better fluidity, so temperatures of 410 and 420 °C and the strain rate range of 5 × 10 −4 –10 −3  s −1 are optional thermal processing parameters. When the temperature is 430 °C and the strain rate range is 5 × 10 −4 –10 −2  s −1 , the processing efficiency range is 75–85%, and the stress range is 16–106 MPa. The (Zr 0.6336 Cu 0.1452 Ni 0.1012 Al 0.12 ) 97.4 Er 2.6 BMG can be thermoformed under smaller flow stress and shows excellent fluidity; therefore, 430 °C and 5 × 10 −4 –10 −2  s −1 also are optional thermal processing parameters.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03363-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7540-4558</orcidid><orcidid>https://orcid.org/0000-0002-2726-3965</orcidid><orcidid>https://orcid.org/0000-0003-1863-0062</orcidid><orcidid>https://orcid.org/0000-0002-2841-5780</orcidid><orcidid>https://orcid.org/0000-0002-0143-7939</orcidid><orcidid>https://orcid.org/0000-0002-9347-5202</orcidid><orcidid>https://orcid.org/0000-0003-0332-7140</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-05, Vol.54 (9), p.7246-7255
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2480895552
source SpringerNature Journals
subjects Amorphous materials
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Compression tests
Crystallography and Scattering Methods
Materials Science
Metallic glasses
Metals
Polymer Sciences
Process mapping
Process parameters
Solid Mechanics
Strain rate
Viscosity
Yield strength
title A thermal processing map of a ZrCuNiAlEr bulk metallic glass in the supercooled liquid region
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermal%20processing%20map%20of%20a%20ZrCuNiAlEr%20bulk%20metallic%20glass%20in%20the%20supercooled%20liquid%20region&rft.jtitle=Journal%20of%20materials%20science&rft.au=Li,%20Chunyan&rft.date=2019-05-01&rft.volume=54&rft.issue=9&rft.spage=7246&rft.epage=7255&rft.pages=7246-7255&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03363-5&rft_dat=%3Cgale_proqu%3EA573937318%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480895552&rft_id=info:pmid/&rft_galeid=A573937318&rfr_iscdi=true