Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation
This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-05, Vol.54 (9), p.6991-7004 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7004 |
---|---|
container_issue | 9 |
container_start_page | 6991 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Grad, Oana Mihet, Maria Dan, Monica Blanita, Gabriela Radu, Teodora Berghian-Grosan, Camelia Lazar, Mihaela D. |
description | This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic activity for formic acid (FA) decomposition in aqueous solution. The most of the structural characteristics are not dependent of the gold content such as: large surface area (234–278 m
2
g
−1
), good crystallinity of graphenes, few layers of carbon in the graphene support (5–6 layers), medium density of structural defects in graphene, the presence of remanent oxygenated groups on the graphene surface, very good dispersion of AuNPs on both sides of the graphene sheets. The AuNPs size instead is strongly dependent on the Au concentration: The smallest nanoparticles were obtained for Au2.5/rGO (3–5 nm) and the largest for Au10/rGO (10–14 nm). The position of the energy levels (conduction band and valence band) relative to the Fermi level also changes with the Au content. |
doi_str_mv | 10.1007/s10853-019-03394-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480894591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573937348</galeid><sourcerecordid>A573937348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6b6b2d737808ccd0a5fd05837d851646f35abd87e8141bb26bc3f0452fa52f5d3</originalsourceid><addsrcrecordid>eNp9kUtr3DAURk1podMkf6ArQVddKNHDsuXuhtBHIFBomrWQpSuPgsdyJRniXX96NeNCyaaIi-Byjh73q6r3lFxTQtqbRIkUHBPaYcJ5V-P1VbWjouW4loS_rnaEMIZZ3dC31buUngghomV0V_3eLzcR7GLAoiHq-QAToPDsLSATjnNIPkP6hMAE7KKHyY4rmiPMOursw4SOkA_BIj1ZZHTW45q9QXqeR2_OQEIuxFMdT33jLbJwWG0MA0xn4LJ64_SY4OrvflE9fvn88_Ybvv_-9e52f48N71jGTd_0zLa8lUQaY4kWzhIheWuloE3dOC50b2ULkta071nTG-5ILZjTpYTlF9WH7dw5hl8LpKyewhKncqViZUayq0VHC3W9UYMeQfnJhRy1KctC-UCYwPnS35fBdrzltSzCxxdCYTI850EvKam7hx8vWbaxJoaUIjg1R3_UcVWUqFOMaotRlRjVOUa1FolvUirwNED89-7_WH8APpeiTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480894591</pqid></control><display><type>article</type><title>Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation</title><source>SpringerNature Journals</source><creator>Grad, Oana ; Mihet, Maria ; Dan, Monica ; Blanita, Gabriela ; Radu, Teodora ; Berghian-Grosan, Camelia ; Lazar, Mihaela D.</creator><creatorcontrib>Grad, Oana ; Mihet, Maria ; Dan, Monica ; Blanita, Gabriela ; Radu, Teodora ; Berghian-Grosan, Camelia ; Lazar, Mihaela D.</creatorcontrib><description>This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic activity for formic acid (FA) decomposition in aqueous solution. The most of the structural characteristics are not dependent of the gold content such as: large surface area (234–278 m
2
g
−1
), good crystallinity of graphenes, few layers of carbon in the graphene support (5–6 layers), medium density of structural defects in graphene, the presence of remanent oxygenated groups on the graphene surface, very good dispersion of AuNPs on both sides of the graphene sheets. The AuNPs size instead is strongly dependent on the Au concentration: The smallest nanoparticles were obtained for Au2.5/rGO (3–5 nm) and the largest for Au10/rGO (10–14 nm). The position of the energy levels (conduction band and valence band) relative to the Fermi level also changes with the Au content.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03394-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aqueous solutions ; Catalysts ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Composites ; Conduction bands ; Crystal defects ; Crystallography and Scattering Methods ; Dehydrogenation ; Energy levels ; Formic acid ; Gold ; Graphene ; Graphite ; Materials Science ; Methods ; Nanoparticles ; Organic acids ; Polymer Sciences ; Solid Mechanics ; Valence band</subject><ispartof>Journal of materials science, 2019-05, Vol.54 (9), p.6991-7004</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6b6b2d737808ccd0a5fd05837d851646f35abd87e8141bb26bc3f0452fa52f5d3</citedby><cites>FETCH-LOGICAL-c392t-6b6b2d737808ccd0a5fd05837d851646f35abd87e8141bb26bc3f0452fa52f5d3</cites><orcidid>0000-0002-3548-2789 ; 0000-0002-0325-970X ; 0000-0002-5885-3132 ; 0000-0003-1678-229X ; 0000-0002-5341-3103 ; 0000-0002-1679-1324 ; 0000-0002-7925-0795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03394-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03394-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Grad, Oana</creatorcontrib><creatorcontrib>Mihet, Maria</creatorcontrib><creatorcontrib>Dan, Monica</creatorcontrib><creatorcontrib>Blanita, Gabriela</creatorcontrib><creatorcontrib>Radu, Teodora</creatorcontrib><creatorcontrib>Berghian-Grosan, Camelia</creatorcontrib><creatorcontrib>Lazar, Mihaela D.</creatorcontrib><title>Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic activity for formic acid (FA) decomposition in aqueous solution. The most of the structural characteristics are not dependent of the gold content such as: large surface area (234–278 m
2
g
−1
), good crystallinity of graphenes, few layers of carbon in the graphene support (5–6 layers), medium density of structural defects in graphene, the presence of remanent oxygenated groups on the graphene surface, very good dispersion of AuNPs on both sides of the graphene sheets. The AuNPs size instead is strongly dependent on the Au concentration: The smallest nanoparticles were obtained for Au2.5/rGO (3–5 nm) and the largest for Au10/rGO (10–14 nm). The position of the energy levels (conduction band and valence band) relative to the Fermi level also changes with the Au content.</description><subject>Aqueous solutions</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Conduction bands</subject><subject>Crystal defects</subject><subject>Crystallography and Scattering Methods</subject><subject>Dehydrogenation</subject><subject>Energy levels</subject><subject>Formic acid</subject><subject>Gold</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Materials Science</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Organic acids</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Valence band</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtr3DAURk1podMkf6ArQVddKNHDsuXuhtBHIFBomrWQpSuPgsdyJRniXX96NeNCyaaIi-Byjh73q6r3lFxTQtqbRIkUHBPaYcJ5V-P1VbWjouW4loS_rnaEMIZZ3dC31buUngghomV0V_3eLzcR7GLAoiHq-QAToPDsLSATjnNIPkP6hMAE7KKHyY4rmiPMOursw4SOkA_BIj1ZZHTW45q9QXqeR2_OQEIuxFMdT33jLbJwWG0MA0xn4LJ64_SY4OrvflE9fvn88_Ybvv_-9e52f48N71jGTd_0zLa8lUQaY4kWzhIheWuloE3dOC50b2ULkta071nTG-5ILZjTpYTlF9WH7dw5hl8LpKyewhKncqViZUayq0VHC3W9UYMeQfnJhRy1KctC-UCYwPnS35fBdrzltSzCxxdCYTI850EvKam7hx8vWbaxJoaUIjg1R3_UcVWUqFOMaotRlRjVOUa1FolvUirwNED89-7_WH8APpeiTg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Grad, Oana</creator><creator>Mihet, Maria</creator><creator>Dan, Monica</creator><creator>Blanita, Gabriela</creator><creator>Radu, Teodora</creator><creator>Berghian-Grosan, Camelia</creator><creator>Lazar, Mihaela D.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3548-2789</orcidid><orcidid>https://orcid.org/0000-0002-0325-970X</orcidid><orcidid>https://orcid.org/0000-0002-5885-3132</orcidid><orcidid>https://orcid.org/0000-0003-1678-229X</orcidid><orcidid>https://orcid.org/0000-0002-5341-3103</orcidid><orcidid>https://orcid.org/0000-0002-1679-1324</orcidid><orcidid>https://orcid.org/0000-0002-7925-0795</orcidid></search><sort><creationdate>20190501</creationdate><title>Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation</title><author>Grad, Oana ; Mihet, Maria ; Dan, Monica ; Blanita, Gabriela ; Radu, Teodora ; Berghian-Grosan, Camelia ; Lazar, Mihaela D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6b6b2d737808ccd0a5fd05837d851646f35abd87e8141bb26bc3f0452fa52f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Conduction bands</topic><topic>Crystal defects</topic><topic>Crystallography and Scattering Methods</topic><topic>Dehydrogenation</topic><topic>Energy levels</topic><topic>Formic acid</topic><topic>Gold</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Materials Science</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Organic acids</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grad, Oana</creatorcontrib><creatorcontrib>Mihet, Maria</creatorcontrib><creatorcontrib>Dan, Monica</creatorcontrib><creatorcontrib>Blanita, Gabriela</creatorcontrib><creatorcontrib>Radu, Teodora</creatorcontrib><creatorcontrib>Berghian-Grosan, Camelia</creatorcontrib><creatorcontrib>Lazar, Mihaela D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grad, Oana</au><au>Mihet, Maria</au><au>Dan, Monica</au><au>Blanita, Gabriela</au><au>Radu, Teodora</au><au>Berghian-Grosan, Camelia</au><au>Lazar, Mihaela D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>54</volume><issue>9</issue><spage>6991</spage><epage>7004</epage><pages>6991-7004</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic activity for formic acid (FA) decomposition in aqueous solution. The most of the structural characteristics are not dependent of the gold content such as: large surface area (234–278 m
2
g
−1
), good crystallinity of graphenes, few layers of carbon in the graphene support (5–6 layers), medium density of structural defects in graphene, the presence of remanent oxygenated groups on the graphene surface, very good dispersion of AuNPs on both sides of the graphene sheets. The AuNPs size instead is strongly dependent on the Au concentration: The smallest nanoparticles were obtained for Au2.5/rGO (3–5 nm) and the largest for Au10/rGO (10–14 nm). The position of the energy levels (conduction band and valence band) relative to the Fermi level also changes with the Au content.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03394-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3548-2789</orcidid><orcidid>https://orcid.org/0000-0002-0325-970X</orcidid><orcidid>https://orcid.org/0000-0002-5885-3132</orcidid><orcidid>https://orcid.org/0000-0003-1678-229X</orcidid><orcidid>https://orcid.org/0000-0002-5341-3103</orcidid><orcidid>https://orcid.org/0000-0002-1679-1324</orcidid><orcidid>https://orcid.org/0000-0002-7925-0795</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-05, Vol.54 (9), p.6991-7004 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2480894591 |
source | SpringerNature Journals |
subjects | Aqueous solutions Catalysts Catalytic activity Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composite materials Composites Conduction bands Crystal defects Crystallography and Scattering Methods Dehydrogenation Energy levels Formic acid Gold Graphene Graphite Materials Science Methods Nanoparticles Organic acids Polymer Sciences Solid Mechanics Valence band |
title | Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au/reduced%20graphene%20oxide%20composites:%20eco-friendly%20preparation%20method%20and%20catalytic%20applications%20for%20formic%20acid%20dehydrogenation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Grad,%20Oana&rft.date=2019-05-01&rft.volume=54&rft.issue=9&rft.spage=6991&rft.epage=7004&rft.pages=6991-7004&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03394-y&rft_dat=%3Cgale_proqu%3EA573937348%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480894591&rft_id=info:pmid/&rft_galeid=A573937348&rfr_iscdi=true |