Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation

This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-05, Vol.54 (9), p.6991-7004
Hauptverfasser: Grad, Oana, Mihet, Maria, Dan, Monica, Blanita, Gabriela, Radu, Teodora, Berghian-Grosan, Camelia, Lazar, Mihaela D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7004
container_issue 9
container_start_page 6991
container_title Journal of materials science
container_volume 54
creator Grad, Oana
Mihet, Maria
Dan, Monica
Blanita, Gabriela
Radu, Teodora
Berghian-Grosan, Camelia
Lazar, Mihaela D.
description This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic activity for formic acid (FA) decomposition in aqueous solution. The most of the structural characteristics are not dependent of the gold content such as: large surface area (234–278 m 2  g −1 ), good crystallinity of graphenes, few layers of carbon in the graphene support (5–6 layers), medium density of structural defects in graphene, the presence of remanent oxygenated groups on the graphene surface, very good dispersion of AuNPs on both sides of the graphene sheets. The AuNPs size instead is strongly dependent on the Au concentration: The smallest nanoparticles were obtained for Au2.5/rGO (3–5 nm) and the largest for Au10/rGO (10–14 nm). The position of the energy levels (conduction band and valence band) relative to the Fermi level also changes with the Au content.
doi_str_mv 10.1007/s10853-019-03394-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480894591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573937348</galeid><sourcerecordid>A573937348</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-6b6b2d737808ccd0a5fd05837d851646f35abd87e8141bb26bc3f0452fa52f5d3</originalsourceid><addsrcrecordid>eNp9kUtr3DAURk1podMkf6ArQVddKNHDsuXuhtBHIFBomrWQpSuPgsdyJRniXX96NeNCyaaIi-Byjh73q6r3lFxTQtqbRIkUHBPaYcJ5V-P1VbWjouW4loS_rnaEMIZZ3dC31buUngghomV0V_3eLzcR7GLAoiHq-QAToPDsLSATjnNIPkP6hMAE7KKHyY4rmiPMOursw4SOkA_BIj1ZZHTW45q9QXqeR2_OQEIuxFMdT33jLbJwWG0MA0xn4LJ64_SY4OrvflE9fvn88_Ybvv_-9e52f48N71jGTd_0zLa8lUQaY4kWzhIheWuloE3dOC50b2ULkta071nTG-5ILZjTpYTlF9WH7dw5hl8LpKyewhKncqViZUayq0VHC3W9UYMeQfnJhRy1KctC-UCYwPnS35fBdrzltSzCxxdCYTI850EvKam7hx8vWbaxJoaUIjg1R3_UcVWUqFOMaotRlRjVOUa1FolvUirwNED89-7_WH8APpeiTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480894591</pqid></control><display><type>article</type><title>Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation</title><source>SpringerNature Journals</source><creator>Grad, Oana ; Mihet, Maria ; Dan, Monica ; Blanita, Gabriela ; Radu, Teodora ; Berghian-Grosan, Camelia ; Lazar, Mihaela D.</creator><creatorcontrib>Grad, Oana ; Mihet, Maria ; Dan, Monica ; Blanita, Gabriela ; Radu, Teodora ; Berghian-Grosan, Camelia ; Lazar, Mihaela D.</creatorcontrib><description>This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic activity for formic acid (FA) decomposition in aqueous solution. The most of the structural characteristics are not dependent of the gold content such as: large surface area (234–278 m 2  g −1 ), good crystallinity of graphenes, few layers of carbon in the graphene support (5–6 layers), medium density of structural defects in graphene, the presence of remanent oxygenated groups on the graphene surface, very good dispersion of AuNPs on both sides of the graphene sheets. The AuNPs size instead is strongly dependent on the Au concentration: The smallest nanoparticles were obtained for Au2.5/rGO (3–5 nm) and the largest for Au10/rGO (10–14 nm). The position of the energy levels (conduction band and valence band) relative to the Fermi level also changes with the Au content.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03394-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aqueous solutions ; Catalysts ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Composites ; Conduction bands ; Crystal defects ; Crystallography and Scattering Methods ; Dehydrogenation ; Energy levels ; Formic acid ; Gold ; Graphene ; Graphite ; Materials Science ; Methods ; Nanoparticles ; Organic acids ; Polymer Sciences ; Solid Mechanics ; Valence band</subject><ispartof>Journal of materials science, 2019-05, Vol.54 (9), p.6991-7004</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-6b6b2d737808ccd0a5fd05837d851646f35abd87e8141bb26bc3f0452fa52f5d3</citedby><cites>FETCH-LOGICAL-c392t-6b6b2d737808ccd0a5fd05837d851646f35abd87e8141bb26bc3f0452fa52f5d3</cites><orcidid>0000-0002-3548-2789 ; 0000-0002-0325-970X ; 0000-0002-5885-3132 ; 0000-0003-1678-229X ; 0000-0002-5341-3103 ; 0000-0002-1679-1324 ; 0000-0002-7925-0795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03394-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03394-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Grad, Oana</creatorcontrib><creatorcontrib>Mihet, Maria</creatorcontrib><creatorcontrib>Dan, Monica</creatorcontrib><creatorcontrib>Blanita, Gabriela</creatorcontrib><creatorcontrib>Radu, Teodora</creatorcontrib><creatorcontrib>Berghian-Grosan, Camelia</creatorcontrib><creatorcontrib>Lazar, Mihaela D.</creatorcontrib><title>Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic activity for formic acid (FA) decomposition in aqueous solution. The most of the structural characteristics are not dependent of the gold content such as: large surface area (234–278 m 2  g −1 ), good crystallinity of graphenes, few layers of carbon in the graphene support (5–6 layers), medium density of structural defects in graphene, the presence of remanent oxygenated groups on the graphene surface, very good dispersion of AuNPs on both sides of the graphene sheets. The AuNPs size instead is strongly dependent on the Au concentration: The smallest nanoparticles were obtained for Au2.5/rGO (3–5 nm) and the largest for Au10/rGO (10–14 nm). The position of the energy levels (conduction band and valence band) relative to the Fermi level also changes with the Au content.</description><subject>Aqueous solutions</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Conduction bands</subject><subject>Crystal defects</subject><subject>Crystallography and Scattering Methods</subject><subject>Dehydrogenation</subject><subject>Energy levels</subject><subject>Formic acid</subject><subject>Gold</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Materials Science</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Organic acids</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Valence band</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtr3DAURk1podMkf6ArQVddKNHDsuXuhtBHIFBomrWQpSuPgsdyJRniXX96NeNCyaaIi-Byjh73q6r3lFxTQtqbRIkUHBPaYcJ5V-P1VbWjouW4loS_rnaEMIZZ3dC31buUngghomV0V_3eLzcR7GLAoiHq-QAToPDsLSATjnNIPkP6hMAE7KKHyY4rmiPMOursw4SOkA_BIj1ZZHTW45q9QXqeR2_OQEIuxFMdT33jLbJwWG0MA0xn4LJ64_SY4OrvflE9fvn88_Ybvv_-9e52f48N71jGTd_0zLa8lUQaY4kWzhIheWuloE3dOC50b2ULkta071nTG-5ILZjTpYTlF9WH7dw5hl8LpKyewhKncqViZUayq0VHC3W9UYMeQfnJhRy1KctC-UCYwPnS35fBdrzltSzCxxdCYTI850EvKam7hx8vWbaxJoaUIjg1R3_UcVWUqFOMaotRlRjVOUa1FolvUirwNED89-7_WH8APpeiTg</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Grad, Oana</creator><creator>Mihet, Maria</creator><creator>Dan, Monica</creator><creator>Blanita, Gabriela</creator><creator>Radu, Teodora</creator><creator>Berghian-Grosan, Camelia</creator><creator>Lazar, Mihaela D.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3548-2789</orcidid><orcidid>https://orcid.org/0000-0002-0325-970X</orcidid><orcidid>https://orcid.org/0000-0002-5885-3132</orcidid><orcidid>https://orcid.org/0000-0003-1678-229X</orcidid><orcidid>https://orcid.org/0000-0002-5341-3103</orcidid><orcidid>https://orcid.org/0000-0002-1679-1324</orcidid><orcidid>https://orcid.org/0000-0002-7925-0795</orcidid></search><sort><creationdate>20190501</creationdate><title>Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation</title><author>Grad, Oana ; Mihet, Maria ; Dan, Monica ; Blanita, Gabriela ; Radu, Teodora ; Berghian-Grosan, Camelia ; Lazar, Mihaela D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-6b6b2d737808ccd0a5fd05837d851646f35abd87e8141bb26bc3f0452fa52f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aqueous solutions</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Conduction bands</topic><topic>Crystal defects</topic><topic>Crystallography and Scattering Methods</topic><topic>Dehydrogenation</topic><topic>Energy levels</topic><topic>Formic acid</topic><topic>Gold</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Materials Science</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Organic acids</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grad, Oana</creatorcontrib><creatorcontrib>Mihet, Maria</creatorcontrib><creatorcontrib>Dan, Monica</creatorcontrib><creatorcontrib>Blanita, Gabriela</creatorcontrib><creatorcontrib>Radu, Teodora</creatorcontrib><creatorcontrib>Berghian-Grosan, Camelia</creatorcontrib><creatorcontrib>Lazar, Mihaela D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grad, Oana</au><au>Mihet, Maria</au><au>Dan, Monica</au><au>Blanita, Gabriela</au><au>Radu, Teodora</au><au>Berghian-Grosan, Camelia</au><au>Lazar, Mihaela D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>54</volume><issue>9</issue><spage>6991</spage><epage>7004</epage><pages>6991-7004</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>This paper presents a new, simple, accessible and environmentally friendly method to prepare gold-reduced graphene oxide composites (Au/rGO) with gold concentration of 2.5 wt%, 5 wt% and 10 wt%. The Au/rGO materials with low Au concentration present AuNPs of low dimensions and proved good catalytic activity for formic acid (FA) decomposition in aqueous solution. The most of the structural characteristics are not dependent of the gold content such as: large surface area (234–278 m 2  g −1 ), good crystallinity of graphenes, few layers of carbon in the graphene support (5–6 layers), medium density of structural defects in graphene, the presence of remanent oxygenated groups on the graphene surface, very good dispersion of AuNPs on both sides of the graphene sheets. The AuNPs size instead is strongly dependent on the Au concentration: The smallest nanoparticles were obtained for Au2.5/rGO (3–5 nm) and the largest for Au10/rGO (10–14 nm). The position of the energy levels (conduction band and valence band) relative to the Fermi level also changes with the Au content.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03394-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3548-2789</orcidid><orcidid>https://orcid.org/0000-0002-0325-970X</orcidid><orcidid>https://orcid.org/0000-0002-5885-3132</orcidid><orcidid>https://orcid.org/0000-0003-1678-229X</orcidid><orcidid>https://orcid.org/0000-0002-5341-3103</orcidid><orcidid>https://orcid.org/0000-0002-1679-1324</orcidid><orcidid>https://orcid.org/0000-0002-7925-0795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-05, Vol.54 (9), p.6991-7004
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2480894591
source SpringerNature Journals
subjects Aqueous solutions
Catalysts
Catalytic activity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Composite materials
Composites
Conduction bands
Crystal defects
Crystallography and Scattering Methods
Dehydrogenation
Energy levels
Formic acid
Gold
Graphene
Graphite
Materials Science
Methods
Nanoparticles
Organic acids
Polymer Sciences
Solid Mechanics
Valence band
title Au/reduced graphene oxide composites: eco-friendly preparation method and catalytic applications for formic acid dehydrogenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Au/reduced%20graphene%20oxide%20composites:%20eco-friendly%20preparation%20method%20and%20catalytic%20applications%20for%20formic%20acid%20dehydrogenation&rft.jtitle=Journal%20of%20materials%20science&rft.au=Grad,%20Oana&rft.date=2019-05-01&rft.volume=54&rft.issue=9&rft.spage=6991&rft.epage=7004&rft.pages=6991-7004&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03394-y&rft_dat=%3Cgale_proqu%3EA573937348%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480894591&rft_id=info:pmid/&rft_galeid=A573937348&rfr_iscdi=true