Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior

The flow behavior of alumina-forming austenitic steel was studied using axisymmetric hot compression on a Gleeble-3500 thermomechanical simulator. The temperature range was 900–1200 °C, and strain rate range was 0.1–100 s −1 . The microstructures after deformation were investigated by electron backs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-06, Vol.54 (11), p.8760-8777
Hauptverfasser: Gao, Qiuzhi, Zhang, Hailian, Li, Huijun, Zhang, Xin, Qu, Fu, Jiang, Yujiao, Liu, Ziyun, Jiang, Chenchen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8777
container_issue 11
container_start_page 8760
container_title Journal of materials science
container_volume 54
creator Gao, Qiuzhi
Zhang, Hailian
Li, Huijun
Zhang, Xin
Qu, Fu
Jiang, Yujiao
Liu, Ziyun
Jiang, Chenchen
description The flow behavior of alumina-forming austenitic steel was studied using axisymmetric hot compression on a Gleeble-3500 thermomechanical simulator. The temperature range was 900–1200 °C, and strain rate range was 0.1–100 s −1 . The microstructures after deformation were investigated by electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM). The deformation temperature and strain rate have a significant influence on the flow stress. A constitutive equation, describing the flow stress as a function of deformation temperature and strain rate, has been developed, and the hot deformation activation energy was confirmed as 579.4 kJ/mol. Dynamic recrystallization (DRX) progress had been finished after increasing hot deformation temperature to 1100 °C at a strain rate of 100 s −1 , leading to the obvious transformation from low-angle grain boundaries (LAGBs) to high-angle grain boundaries (HAGBs), and a relatively stable fraction of HAGBs was obtained. At a strain rate of 100 s −1 , the β-fiber at {011} transited to {112} (C orientation), and finally a recrystallized orientation of {100} formed after absolute DRX. GDRX is the primary DRX mechanism, but DDRX mechanism is dominant with the increase in deformation temperature at a high strain rate of 100 s −1 .
doi_str_mv 10.1007/s10853-019-03513-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480893375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A579146212</galeid><sourcerecordid>A579146212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-486d6057ede33cdb917937b469aa44c506c220f374e40119ac53cb1d297a893</originalsourceid><addsrcrecordid>eNp9kUtPAyEUhYnRxPr4A65IXLmYynMo7qrWR2JitO4JZZiKmYIC4-PfSx0T041hcW9uvgOHewA4wmiMERKnCaMJpxXCskKUY1rJLTDCXNCKTRDdBiOECKkIq_Eu2EvpBSHEBcEj8HATMmxsG-JKZxc8DC3UXb9yXlfrofNLqPuUrXfZGVga253B2fn8svR98wW1b2DbhQ-4sM_63YV4AHZa3SV7-Fv3wfxq9nRxU93dX99eTO8qw_gkF191UxcTtrGUmmYhsZBULFgttWbMcFQbQlBLBbMMYSy14dQscEOk0BNJ98HxcOtrDG-9TVm9hD768qAi5cuFoIIXajxQS91Z5XwbctSmnMaunAnetq7Mp1xIzGqCSRGcbAgKk-1nXpYVJHU7f9xkycCaGFKKtlWv0a10_FIYqXUqakhFlVTUTypq7ZsOolRgv7Txz_c_qm_2no1P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480893375</pqid></control><display><type>article</type><title>Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Qiuzhi ; Zhang, Hailian ; Li, Huijun ; Zhang, Xin ; Qu, Fu ; Jiang, Yujiao ; Liu, Ziyun ; Jiang, Chenchen</creator><creatorcontrib>Gao, Qiuzhi ; Zhang, Hailian ; Li, Huijun ; Zhang, Xin ; Qu, Fu ; Jiang, Yujiao ; Liu, Ziyun ; Jiang, Chenchen</creatorcontrib><description>The flow behavior of alumina-forming austenitic steel was studied using axisymmetric hot compression on a Gleeble-3500 thermomechanical simulator. The temperature range was 900–1200 °C, and strain rate range was 0.1–100 s −1 . The microstructures after deformation were investigated by electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM). The deformation temperature and strain rate have a significant influence on the flow stress. A constitutive equation, describing the flow stress as a function of deformation temperature and strain rate, has been developed, and the hot deformation activation energy was confirmed as 579.4 kJ/mol. Dynamic recrystallization (DRX) progress had been finished after increasing hot deformation temperature to 1100 °C at a strain rate of 100 s −1 , leading to the obvious transformation from low-angle grain boundaries (LAGBs) to high-angle grain boundaries (HAGBs), and a relatively stable fraction of HAGBs was obtained. At a strain rate of 100 s −1 , the β-fiber at {011} transited to {112} (C orientation), and finally a recrystallized orientation of {100} formed after absolute DRX. GDRX is the primary DRX mechanism, but DDRX mechanism is dominant with the increase in deformation temperature at a high strain rate of 100 s −1 .</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03513-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activation energy ; Aluminum oxide ; Austenitic stainless steels ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Constitutive equations ; Constitutive relationships ; Crystallography and Scattering Methods ; Deformation ; Dynamic recrystallization ; Electron backscatter diffraction ; Grain boundaries ; High strain rate ; Hot pressing ; Materials Science ; Metals ; Polymer Sciences ; Solid Mechanics ; Steel ; Thermal simulators ; Yield strength</subject><ispartof>Journal of materials science, 2019-06, Vol.54 (11), p.8760-8777</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-486d6057ede33cdb917937b469aa44c506c220f374e40119ac53cb1d297a893</citedby><cites>FETCH-LOGICAL-c458t-486d6057ede33cdb917937b469aa44c506c220f374e40119ac53cb1d297a893</cites><orcidid>0000-0003-2992-7590 ; 0000-0002-2896-3867 ; 0000-0002-6502-130X ; 0000-0003-3904-875X ; 0000-0001-8303-4836 ; 0000-0002-2199-1937 ; 0000-0002-6547-5168 ; 0000-0002-6301-0252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03513-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03513-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Gao, Qiuzhi</creatorcontrib><creatorcontrib>Zhang, Hailian</creatorcontrib><creatorcontrib>Li, Huijun</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Qu, Fu</creatorcontrib><creatorcontrib>Jiang, Yujiao</creatorcontrib><creatorcontrib>Liu, Ziyun</creatorcontrib><creatorcontrib>Jiang, Chenchen</creatorcontrib><title>Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The flow behavior of alumina-forming austenitic steel was studied using axisymmetric hot compression on a Gleeble-3500 thermomechanical simulator. The temperature range was 900–1200 °C, and strain rate range was 0.1–100 s −1 . The microstructures after deformation were investigated by electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM). The deformation temperature and strain rate have a significant influence on the flow stress. A constitutive equation, describing the flow stress as a function of deformation temperature and strain rate, has been developed, and the hot deformation activation energy was confirmed as 579.4 kJ/mol. Dynamic recrystallization (DRX) progress had been finished after increasing hot deformation temperature to 1100 °C at a strain rate of 100 s −1 , leading to the obvious transformation from low-angle grain boundaries (LAGBs) to high-angle grain boundaries (HAGBs), and a relatively stable fraction of HAGBs was obtained. At a strain rate of 100 s −1 , the β-fiber at {011} transited to {112} (C orientation), and finally a recrystallized orientation of {100} formed after absolute DRX. GDRX is the primary DRX mechanism, but DDRX mechanism is dominant with the increase in deformation temperature at a high strain rate of 100 s −1 .</description><subject>Activation energy</subject><subject>Aluminum oxide</subject><subject>Austenitic stainless steels</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Electron backscatter diffraction</subject><subject>Grain boundaries</subject><subject>High strain rate</subject><subject>Hot pressing</subject><subject>Materials Science</subject><subject>Metals</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Steel</subject><subject>Thermal simulators</subject><subject>Yield strength</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtPAyEUhYnRxPr4A65IXLmYynMo7qrWR2JitO4JZZiKmYIC4-PfSx0T041hcW9uvgOHewA4wmiMERKnCaMJpxXCskKUY1rJLTDCXNCKTRDdBiOECKkIq_Eu2EvpBSHEBcEj8HATMmxsG-JKZxc8DC3UXb9yXlfrofNLqPuUrXfZGVga253B2fn8svR98wW1b2DbhQ-4sM_63YV4AHZa3SV7-Fv3wfxq9nRxU93dX99eTO8qw_gkF191UxcTtrGUmmYhsZBULFgttWbMcFQbQlBLBbMMYSy14dQscEOk0BNJ98HxcOtrDG-9TVm9hD768qAi5cuFoIIXajxQS91Z5XwbctSmnMaunAnetq7Mp1xIzGqCSRGcbAgKk-1nXpYVJHU7f9xkycCaGFKKtlWv0a10_FIYqXUqakhFlVTUTypq7ZsOolRgv7Txz_c_qm_2no1P</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Gao, Qiuzhi</creator><creator>Zhang, Hailian</creator><creator>Li, Huijun</creator><creator>Zhang, Xin</creator><creator>Qu, Fu</creator><creator>Jiang, Yujiao</creator><creator>Liu, Ziyun</creator><creator>Jiang, Chenchen</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-2992-7590</orcidid><orcidid>https://orcid.org/0000-0002-2896-3867</orcidid><orcidid>https://orcid.org/0000-0002-6502-130X</orcidid><orcidid>https://orcid.org/0000-0003-3904-875X</orcidid><orcidid>https://orcid.org/0000-0001-8303-4836</orcidid><orcidid>https://orcid.org/0000-0002-2199-1937</orcidid><orcidid>https://orcid.org/0000-0002-6547-5168</orcidid><orcidid>https://orcid.org/0000-0002-6301-0252</orcidid></search><sort><creationdate>20190601</creationdate><title>Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior</title><author>Gao, Qiuzhi ; Zhang, Hailian ; Li, Huijun ; Zhang, Xin ; Qu, Fu ; Jiang, Yujiao ; Liu, Ziyun ; Jiang, Chenchen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-486d6057ede33cdb917937b469aa44c506c220f374e40119ac53cb1d297a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activation energy</topic><topic>Aluminum oxide</topic><topic>Austenitic stainless steels</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Electron backscatter diffraction</topic><topic>Grain boundaries</topic><topic>High strain rate</topic><topic>Hot pressing</topic><topic>Materials Science</topic><topic>Metals</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Steel</topic><topic>Thermal simulators</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Qiuzhi</creatorcontrib><creatorcontrib>Zhang, Hailian</creatorcontrib><creatorcontrib>Li, Huijun</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Qu, Fu</creatorcontrib><creatorcontrib>Jiang, Yujiao</creatorcontrib><creatorcontrib>Liu, Ziyun</creatorcontrib><creatorcontrib>Jiang, Chenchen</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Qiuzhi</au><au>Zhang, Hailian</au><au>Li, Huijun</au><au>Zhang, Xin</au><au>Qu, Fu</au><au>Jiang, Yujiao</au><au>Liu, Ziyun</au><au>Jiang, Chenchen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>54</volume><issue>11</issue><spage>8760</spage><epage>8777</epage><pages>8760-8777</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The flow behavior of alumina-forming austenitic steel was studied using axisymmetric hot compression on a Gleeble-3500 thermomechanical simulator. The temperature range was 900–1200 °C, and strain rate range was 0.1–100 s −1 . The microstructures after deformation were investigated by electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM). The deformation temperature and strain rate have a significant influence on the flow stress. A constitutive equation, describing the flow stress as a function of deformation temperature and strain rate, has been developed, and the hot deformation activation energy was confirmed as 579.4 kJ/mol. Dynamic recrystallization (DRX) progress had been finished after increasing hot deformation temperature to 1100 °C at a strain rate of 100 s −1 , leading to the obvious transformation from low-angle grain boundaries (LAGBs) to high-angle grain boundaries (HAGBs), and a relatively stable fraction of HAGBs was obtained. At a strain rate of 100 s −1 , the β-fiber at {011} transited to {112} (C orientation), and finally a recrystallized orientation of {100} formed after absolute DRX. GDRX is the primary DRX mechanism, but DDRX mechanism is dominant with the increase in deformation temperature at a high strain rate of 100 s −1 .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03513-9</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-2992-7590</orcidid><orcidid>https://orcid.org/0000-0002-2896-3867</orcidid><orcidid>https://orcid.org/0000-0002-6502-130X</orcidid><orcidid>https://orcid.org/0000-0003-3904-875X</orcidid><orcidid>https://orcid.org/0000-0001-8303-4836</orcidid><orcidid>https://orcid.org/0000-0002-2199-1937</orcidid><orcidid>https://orcid.org/0000-0002-6547-5168</orcidid><orcidid>https://orcid.org/0000-0002-6301-0252</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-06, Vol.54 (11), p.8760-8777
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2480893375
source SpringerLink Journals - AutoHoldings
subjects Activation energy
Aluminum oxide
Austenitic stainless steels
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Constitutive equations
Constitutive relationships
Crystallography and Scattering Methods
Deformation
Dynamic recrystallization
Electron backscatter diffraction
Grain boundaries
High strain rate
Hot pressing
Materials Science
Metals
Polymer Sciences
Solid Mechanics
Steel
Thermal simulators
Yield strength
title Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hot%20deformation%20of%20alumina-forming%20austenitic%20steel:%20EBSD%20study%20and%20flow%20behavior&rft.jtitle=Journal%20of%20materials%20science&rft.au=Gao,%20Qiuzhi&rft.date=2019-06-01&rft.volume=54&rft.issue=11&rft.spage=8760&rft.epage=8777&rft.pages=8760-8777&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03513-9&rft_dat=%3Cgale_proqu%3EA579146212%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480893375&rft_id=info:pmid/&rft_galeid=A579146212&rfr_iscdi=true