Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development

Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2019-06, Vol.54 (11), p.8187-8201
Hauptverfasser: Thongkham, Warittha, Lertsatitthanakorn, Charoenporn, Jitpukdee, Manit, Jiramitmongkon, Kanpitcha, Khanchaitit, Paisan, Liangruksa, Monrudee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8201
container_issue 11
container_start_page 8187
container_title Journal of materials science
container_volume 54
creator Thongkham, Warittha
Lertsatitthanakorn, Charoenporn
Jitpukdee, Manit
Jiramitmongkon, Kanpitcha
Khanchaitit, Paisan
Liangruksa, Monrudee
description Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit ( ZT ) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (Δ T  = 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.
doi_str_mv 10.1007/s10853-019-03480-1
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480893275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A579146227</galeid><sourcerecordid>A579146227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c9c4aedb64207dd711ff57f0e1888e88bca38fd8957ba2187ac0e223905235433</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1poNukf6AnQU89ONGHvZJ7C0s_AoFCk57FrDR2FGRpK8kh-xv6p6vULSWXMgcx4nmGYd6mecvoOaNUXmRGVS9ayoaWik7Rlr1oNqyXoq2NeNlsKOW85d2WvWpe53xPKe0lZ5vm5y4Gu5jiHpAECHF0fr6Y0cPsApIxwkzujvvkLCl3mOaIHk1JzhDIBNY_8MSFvHgoMZEJAyYoLkzkL-rK8cMTGRMWZyoNAfwxuzogWGLxAX08zBjKWXMygs_45s972nz_9PF296W9_vr5and53ZpOsNKawXSAdr_tOJXWSsbGsZcjRaaUQqX2BoQarRp6uQfOlARDkXMx0J6LvhPitHm3zj2k-GPBXPR9XFJdKmtez6UGwWVfqfOVmsCjdmGMJYGpZXF2Jgasp0J92cuBdVvOZRXePxMqU_CxTLDkrK9uvj1n-cqaFHNOOOpDcjOko2ZUPyWq10R1TVT_TlSzKolVyhUOE6Z_e__H-gXBvaXt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480893275</pqid></control><display><type>article</type><title>Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development</title><source>SpringerLink Journals</source><creator>Thongkham, Warittha ; Lertsatitthanakorn, Charoenporn ; Jitpukdee, Manit ; Jiramitmongkon, Kanpitcha ; Khanchaitit, Paisan ; Liangruksa, Monrudee</creator><creatorcontrib>Thongkham, Warittha ; Lertsatitthanakorn, Charoenporn ; Jitpukdee, Manit ; Jiramitmongkon, Kanpitcha ; Khanchaitit, Paisan ; Liangruksa, Monrudee</creatorcontrib><description>Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit ( ZT ) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (Δ T  = 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03480-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternative energy sources ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Clean energy ; Crystallography and Scattering Methods ; Design optimization ; Dielectric films ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Energy harvesting ; Figure of merit ; Force and energy ; Materials Science ; Melamine ; Nanomaterials ; Polymer Sciences ; Production costs ; Sodium dodecyl sulfate ; Solid Mechanics ; Sulfates ; Surface active agents ; Thermoelectricity ; Thin films</subject><ispartof>Journal of materials science, 2019-06, Vol.54 (11), p.8187-8201</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-c9c4aedb64207dd711ff57f0e1888e88bca38fd8957ba2187ac0e223905235433</citedby><cites>FETCH-LOGICAL-c431t-c9c4aedb64207dd711ff57f0e1888e88bca38fd8957ba2187ac0e223905235433</cites><orcidid>0000-0003-0415-0885 ; 0000-0002-7246-7502 ; 0000-0003-3375-3132 ; 0000-0002-7579-9502 ; 0000-0001-6531-1975 ; 0000-0003-2643-4440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03480-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03480-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Thongkham, Warittha</creatorcontrib><creatorcontrib>Lertsatitthanakorn, Charoenporn</creatorcontrib><creatorcontrib>Jitpukdee, Manit</creatorcontrib><creatorcontrib>Jiramitmongkon, Kanpitcha</creatorcontrib><creatorcontrib>Khanchaitit, Paisan</creatorcontrib><creatorcontrib>Liangruksa, Monrudee</creatorcontrib><title>Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit ( ZT ) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (Δ T  = 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.</description><subject>Alternative energy sources</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Clean energy</subject><subject>Crystallography and Scattering Methods</subject><subject>Design optimization</subject><subject>Dielectric films</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy harvesting</subject><subject>Figure of merit</subject><subject>Force and energy</subject><subject>Materials Science</subject><subject>Melamine</subject><subject>Nanomaterials</subject><subject>Polymer Sciences</subject><subject>Production costs</subject><subject>Sodium dodecyl sulfate</subject><subject>Solid Mechanics</subject><subject>Sulfates</subject><subject>Surface active agents</subject><subject>Thermoelectricity</subject><subject>Thin films</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhk1poNukf6AnQU89ONGHvZJ7C0s_AoFCk57FrDR2FGRpK8kh-xv6p6vULSWXMgcx4nmGYd6mecvoOaNUXmRGVS9ayoaWik7Rlr1oNqyXoq2NeNlsKOW85d2WvWpe53xPKe0lZ5vm5y4Gu5jiHpAECHF0fr6Y0cPsApIxwkzujvvkLCl3mOaIHk1JzhDIBNY_8MSFvHgoMZEJAyYoLkzkL-rK8cMTGRMWZyoNAfwxuzogWGLxAX08zBjKWXMygs_45s972nz_9PF296W9_vr5and53ZpOsNKawXSAdr_tOJXWSsbGsZcjRaaUQqX2BoQarRp6uQfOlARDkXMx0J6LvhPitHm3zj2k-GPBXPR9XFJdKmtez6UGwWVfqfOVmsCjdmGMJYGpZXF2Jgasp0J92cuBdVvOZRXePxMqU_CxTLDkrK9uvj1n-cqaFHNOOOpDcjOko2ZUPyWq10R1TVT_TlSzKolVyhUOE6Z_e__H-gXBvaXt</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Thongkham, Warittha</creator><creator>Lertsatitthanakorn, Charoenporn</creator><creator>Jitpukdee, Manit</creator><creator>Jiramitmongkon, Kanpitcha</creator><creator>Khanchaitit, Paisan</creator><creator>Liangruksa, Monrudee</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0415-0885</orcidid><orcidid>https://orcid.org/0000-0002-7246-7502</orcidid><orcidid>https://orcid.org/0000-0003-3375-3132</orcidid><orcidid>https://orcid.org/0000-0002-7579-9502</orcidid><orcidid>https://orcid.org/0000-0001-6531-1975</orcidid><orcidid>https://orcid.org/0000-0003-2643-4440</orcidid></search><sort><creationdate>20190601</creationdate><title>Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development</title><author>Thongkham, Warittha ; Lertsatitthanakorn, Charoenporn ; Jitpukdee, Manit ; Jiramitmongkon, Kanpitcha ; Khanchaitit, Paisan ; Liangruksa, Monrudee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c9c4aedb64207dd711ff57f0e1888e88bca38fd8957ba2187ac0e223905235433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy sources</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Clean energy</topic><topic>Crystallography and Scattering Methods</topic><topic>Design optimization</topic><topic>Dielectric films</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy harvesting</topic><topic>Figure of merit</topic><topic>Force and energy</topic><topic>Materials Science</topic><topic>Melamine</topic><topic>Nanomaterials</topic><topic>Polymer Sciences</topic><topic>Production costs</topic><topic>Sodium dodecyl sulfate</topic><topic>Solid Mechanics</topic><topic>Sulfates</topic><topic>Surface active agents</topic><topic>Thermoelectricity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thongkham, Warittha</creatorcontrib><creatorcontrib>Lertsatitthanakorn, Charoenporn</creatorcontrib><creatorcontrib>Jitpukdee, Manit</creatorcontrib><creatorcontrib>Jiramitmongkon, Kanpitcha</creatorcontrib><creatorcontrib>Khanchaitit, Paisan</creatorcontrib><creatorcontrib>Liangruksa, Monrudee</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thongkham, Warittha</au><au>Lertsatitthanakorn, Charoenporn</au><au>Jitpukdee, Manit</au><au>Jiramitmongkon, Kanpitcha</au><au>Khanchaitit, Paisan</au><au>Liangruksa, Monrudee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>54</volume><issue>11</issue><spage>8187</spage><epage>8201</epage><pages>8187-8201</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit ( ZT ) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (Δ T  = 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03480-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0415-0885</orcidid><orcidid>https://orcid.org/0000-0002-7246-7502</orcidid><orcidid>https://orcid.org/0000-0003-3375-3132</orcidid><orcidid>https://orcid.org/0000-0002-7579-9502</orcidid><orcidid>https://orcid.org/0000-0001-6531-1975</orcidid><orcidid>https://orcid.org/0000-0003-2643-4440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2019-06, Vol.54 (11), p.8187-8201
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2480893275
source SpringerLink Journals
subjects Alternative energy sources
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Clean energy
Crystallography and Scattering Methods
Design optimization
Dielectric films
Electric properties
Electrical conductivity
Electrical resistivity
Energy harvesting
Figure of merit
Force and energy
Materials Science
Melamine
Nanomaterials
Polymer Sciences
Production costs
Sodium dodecyl sulfate
Solid Mechanics
Sulfates
Surface active agents
Thermoelectricity
Thin films
title Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20nanofilm/melamine%20foam%20hybrid%20thermoelectric%20as%20a%20thermal%20insulator%20generating%20electricity:%20theoretical%20analysis%20and%20development&rft.jtitle=Journal%20of%20materials%20science&rft.au=Thongkham,%20Warittha&rft.date=2019-06-01&rft.volume=54&rft.issue=11&rft.spage=8187&rft.epage=8201&rft.pages=8187-8201&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03480-1&rft_dat=%3Cgale_proqu%3EA579146227%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480893275&rft_id=info:pmid/&rft_galeid=A579146227&rfr_iscdi=true