Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development
Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2019-06, Vol.54 (11), p.8187-8201 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8201 |
---|---|
container_issue | 11 |
container_start_page | 8187 |
container_title | Journal of materials science |
container_volume | 54 |
creator | Thongkham, Warittha Lertsatitthanakorn, Charoenporn Jitpukdee, Manit Jiramitmongkon, Kanpitcha Khanchaitit, Paisan Liangruksa, Monrudee |
description | Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit (
ZT
) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (Δ
T
= 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator. |
doi_str_mv | 10.1007/s10853-019-03480-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480893275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A579146227</galeid><sourcerecordid>A579146227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-c9c4aedb64207dd711ff57f0e1888e88bca38fd8957ba2187ac0e223905235433</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1poNukf6AnQU89ONGHvZJ7C0s_AoFCk57FrDR2FGRpK8kh-xv6p6vULSWXMgcx4nmGYd6mecvoOaNUXmRGVS9ayoaWik7Rlr1oNqyXoq2NeNlsKOW85d2WvWpe53xPKe0lZ5vm5y4Gu5jiHpAECHF0fr6Y0cPsApIxwkzujvvkLCl3mOaIHk1JzhDIBNY_8MSFvHgoMZEJAyYoLkzkL-rK8cMTGRMWZyoNAfwxuzogWGLxAX08zBjKWXMygs_45s972nz_9PF296W9_vr5and53ZpOsNKawXSAdr_tOJXWSsbGsZcjRaaUQqX2BoQarRp6uQfOlARDkXMx0J6LvhPitHm3zj2k-GPBXPR9XFJdKmtez6UGwWVfqfOVmsCjdmGMJYGpZXF2Jgasp0J92cuBdVvOZRXePxMqU_CxTLDkrK9uvj1n-cqaFHNOOOpDcjOko2ZUPyWq10R1TVT_TlSzKolVyhUOE6Z_e__H-gXBvaXt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480893275</pqid></control><display><type>article</type><title>Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development</title><source>SpringerLink Journals</source><creator>Thongkham, Warittha ; Lertsatitthanakorn, Charoenporn ; Jitpukdee, Manit ; Jiramitmongkon, Kanpitcha ; Khanchaitit, Paisan ; Liangruksa, Monrudee</creator><creatorcontrib>Thongkham, Warittha ; Lertsatitthanakorn, Charoenporn ; Jitpukdee, Manit ; Jiramitmongkon, Kanpitcha ; Khanchaitit, Paisan ; Liangruksa, Monrudee</creatorcontrib><description>Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit (
ZT
) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (Δ
T
= 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-019-03480-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alternative energy sources ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Clean energy ; Crystallography and Scattering Methods ; Design optimization ; Dielectric films ; Electric properties ; Electrical conductivity ; Electrical resistivity ; Energy harvesting ; Figure of merit ; Force and energy ; Materials Science ; Melamine ; Nanomaterials ; Polymer Sciences ; Production costs ; Sodium dodecyl sulfate ; Solid Mechanics ; Sulfates ; Surface active agents ; Thermoelectricity ; Thin films</subject><ispartof>Journal of materials science, 2019-06, Vol.54 (11), p.8187-8201</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-c9c4aedb64207dd711ff57f0e1888e88bca38fd8957ba2187ac0e223905235433</citedby><cites>FETCH-LOGICAL-c431t-c9c4aedb64207dd711ff57f0e1888e88bca38fd8957ba2187ac0e223905235433</cites><orcidid>0000-0003-0415-0885 ; 0000-0002-7246-7502 ; 0000-0003-3375-3132 ; 0000-0002-7579-9502 ; 0000-0001-6531-1975 ; 0000-0003-2643-4440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-019-03480-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-019-03480-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Thongkham, Warittha</creatorcontrib><creatorcontrib>Lertsatitthanakorn, Charoenporn</creatorcontrib><creatorcontrib>Jitpukdee, Manit</creatorcontrib><creatorcontrib>Jiramitmongkon, Kanpitcha</creatorcontrib><creatorcontrib>Khanchaitit, Paisan</creatorcontrib><creatorcontrib>Liangruksa, Monrudee</creatorcontrib><title>Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit (
ZT
) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (Δ
T
= 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.</description><subject>Alternative energy sources</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Clean energy</subject><subject>Crystallography and Scattering Methods</subject><subject>Design optimization</subject><subject>Dielectric films</subject><subject>Electric properties</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy harvesting</subject><subject>Figure of merit</subject><subject>Force and energy</subject><subject>Materials Science</subject><subject>Melamine</subject><subject>Nanomaterials</subject><subject>Polymer Sciences</subject><subject>Production costs</subject><subject>Sodium dodecyl sulfate</subject><subject>Solid Mechanics</subject><subject>Sulfates</subject><subject>Surface active agents</subject><subject>Thermoelectricity</subject><subject>Thin films</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhk1poNukf6AnQU89ONGHvZJ7C0s_AoFCk57FrDR2FGRpK8kh-xv6p6vULSWXMgcx4nmGYd6mecvoOaNUXmRGVS9ayoaWik7Rlr1oNqyXoq2NeNlsKOW85d2WvWpe53xPKe0lZ5vm5y4Gu5jiHpAECHF0fr6Y0cPsApIxwkzujvvkLCl3mOaIHk1JzhDIBNY_8MSFvHgoMZEJAyYoLkzkL-rK8cMTGRMWZyoNAfwxuzogWGLxAX08zBjKWXMygs_45s972nz_9PF296W9_vr5and53ZpOsNKawXSAdr_tOJXWSsbGsZcjRaaUQqX2BoQarRp6uQfOlARDkXMx0J6LvhPitHm3zj2k-GPBXPR9XFJdKmtez6UGwWVfqfOVmsCjdmGMJYGpZXF2Jgasp0J92cuBdVvOZRXePxMqU_CxTLDkrK9uvj1n-cqaFHNOOOpDcjOko2ZUPyWq10R1TVT_TlSzKolVyhUOE6Z_e__H-gXBvaXt</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Thongkham, Warittha</creator><creator>Lertsatitthanakorn, Charoenporn</creator><creator>Jitpukdee, Manit</creator><creator>Jiramitmongkon, Kanpitcha</creator><creator>Khanchaitit, Paisan</creator><creator>Liangruksa, Monrudee</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0415-0885</orcidid><orcidid>https://orcid.org/0000-0002-7246-7502</orcidid><orcidid>https://orcid.org/0000-0003-3375-3132</orcidid><orcidid>https://orcid.org/0000-0002-7579-9502</orcidid><orcidid>https://orcid.org/0000-0001-6531-1975</orcidid><orcidid>https://orcid.org/0000-0003-2643-4440</orcidid></search><sort><creationdate>20190601</creationdate><title>Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development</title><author>Thongkham, Warittha ; Lertsatitthanakorn, Charoenporn ; Jitpukdee, Manit ; Jiramitmongkon, Kanpitcha ; Khanchaitit, Paisan ; Liangruksa, Monrudee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-c9c4aedb64207dd711ff57f0e1888e88bca38fd8957ba2187ac0e223905235433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy sources</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Clean energy</topic><topic>Crystallography and Scattering Methods</topic><topic>Design optimization</topic><topic>Dielectric films</topic><topic>Electric properties</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy harvesting</topic><topic>Figure of merit</topic><topic>Force and energy</topic><topic>Materials Science</topic><topic>Melamine</topic><topic>Nanomaterials</topic><topic>Polymer Sciences</topic><topic>Production costs</topic><topic>Sodium dodecyl sulfate</topic><topic>Solid Mechanics</topic><topic>Sulfates</topic><topic>Surface active agents</topic><topic>Thermoelectricity</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thongkham, Warittha</creatorcontrib><creatorcontrib>Lertsatitthanakorn, Charoenporn</creatorcontrib><creatorcontrib>Jitpukdee, Manit</creatorcontrib><creatorcontrib>Jiramitmongkon, Kanpitcha</creatorcontrib><creatorcontrib>Khanchaitit, Paisan</creatorcontrib><creatorcontrib>Liangruksa, Monrudee</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thongkham, Warittha</au><au>Lertsatitthanakorn, Charoenporn</au><au>Jitpukdee, Manit</au><au>Jiramitmongkon, Kanpitcha</au><au>Khanchaitit, Paisan</au><au>Liangruksa, Monrudee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>54</volume><issue>11</issue><spage>8187</spage><epage>8201</epage><pages>8187-8201</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit (
ZT
) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (Δ
T
= 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-019-03480-1</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0415-0885</orcidid><orcidid>https://orcid.org/0000-0002-7246-7502</orcidid><orcidid>https://orcid.org/0000-0003-3375-3132</orcidid><orcidid>https://orcid.org/0000-0002-7579-9502</orcidid><orcidid>https://orcid.org/0000-0001-6531-1975</orcidid><orcidid>https://orcid.org/0000-0003-2643-4440</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2019-06, Vol.54 (11), p.8187-8201 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2480893275 |
source | SpringerLink Journals |
subjects | Alternative energy sources Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Clean energy Crystallography and Scattering Methods Design optimization Dielectric films Electric properties Electrical conductivity Electrical resistivity Energy harvesting Figure of merit Force and energy Materials Science Melamine Nanomaterials Polymer Sciences Production costs Sodium dodecyl sulfate Solid Mechanics Sulfates Surface active agents Thermoelectricity Thin films |
title | Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20nanofilm/melamine%20foam%20hybrid%20thermoelectric%20as%20a%20thermal%20insulator%20generating%20electricity:%20theoretical%20analysis%20and%20development&rft.jtitle=Journal%20of%20materials%20science&rft.au=Thongkham,%20Warittha&rft.date=2019-06-01&rft.volume=54&rft.issue=11&rft.spage=8187&rft.epage=8201&rft.pages=8187-8201&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-019-03480-1&rft_dat=%3Cgale_proqu%3EA579146227%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480893275&rft_id=info:pmid/&rft_galeid=A579146227&rfr_iscdi=true |