FabricNet: A Fiber Recognition Architecture Using Ensemble ConvNets

Fabric is a planar material composed of textile fibers. Textile fibers are generated from many natural sources; including plants, animals, minerals, and even, it can be synthetic. A particular fabric may contain different types of fibers that pass through a complex production process. Fiber identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.1-1
Hauptverfasser: Ohi, Abu Quwsar, Mridha, M. F., Hamid, Md. Abdul, Monowar, Muhammad Mostafa, Kateb, Faris A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 9
creator Ohi, Abu Quwsar
Mridha, M. F.
Hamid, Md. Abdul
Monowar, Muhammad Mostafa
Kateb, Faris A
description Fabric is a planar material composed of textile fibers. Textile fibers are generated from many natural sources; including plants, animals, minerals, and even, it can be synthetic. A particular fabric may contain different types of fibers that pass through a complex production process. Fiber identification is usually carried out through chemical tests and microscopic tests. However, these testing processes are complicated as well as time-consuming. We propose FabricNet, a pioneering approach for the image-based textile fiber recognition system, which may have a revolutionary impact from individual to the industrial fiber recognition process. The FabricNet can recognize a large scale of fibers by only utilizing a surface image of fabric. The recognition system is constructed using a distinct category of class-based ensemble convolutional neural network (CNN) architecture. The experiment is conducted on recognizing 50 different types of textile fibers. This experiment includes a significantly large number of unique textile fibers than previous research endeavors to the best of our knowledge. We experiment with popular CNN architectures that include Inception, ResNet, VGG, MobileNet, DenseNet, and Xception. Finally, the experimental results demonstrate that FabricNet outperforms the state-of-the-art popular CNN architectures by reaching an accuracy of 84% and F1-score of 90%.
doi_str_mv 10.1109/ACCESS.2021.3051980
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2480865932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9326391</ieee_id><doaj_id>oai_doaj_org_article_07fd65a6d822415e83f8cb747824683b</doaj_id><sourcerecordid>2480865932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b1f9832650268de892fc35838dd6221b824fa220415ad556c9c848579c015ebe3</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxRdRULSfoJcFz635s8lOvJWlVUEUrD2HbHa2ptRNTbaC397ULcW5zDDM-73hZdmYkimlRN3Nqmq-XE4ZYXTKiaAKyFl2xahUEy64PP83X2ajGDckFaSVKK-yamHq4OwL9vf5LF-4GkP-htavO9c73-WzYD9cj7bfB8xX0XXrfN5F_Ky3mFe--07CeJNdtGYbcXTs19lqMX-vHifPrw9P1ex5YgsC_aSmrQLOpCBMQoOgWGu5AA5NIxmjNbCiNYyRggrTCCGtslCAKJUlVGCN_Dp7GriNNxu9C-7ThB_tjdN_Cx_W2oTe2S1qUraNFEY2wFjiIfAWbF0WZTKRwOvEuh1Yu-C_9hh7vfH70KX3NSuAgBSKs3TFhysbfIwB25MrJfoQvh7C14fw9TH8pBoPKoeIJ0XiSa4o_wWVjnz_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480865932</pqid></control><display><type>article</type><title>FabricNet: A Fiber Recognition Architecture Using Ensemble ConvNets</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ohi, Abu Quwsar ; Mridha, M. F. ; Hamid, Md. Abdul ; Monowar, Muhammad Mostafa ; Kateb, Faris A</creator><creatorcontrib>Ohi, Abu Quwsar ; Mridha, M. F. ; Hamid, Md. Abdul ; Monowar, Muhammad Mostafa ; Kateb, Faris A</creatorcontrib><description>Fabric is a planar material composed of textile fibers. Textile fibers are generated from many natural sources; including plants, animals, minerals, and even, it can be synthetic. A particular fabric may contain different types of fibers that pass through a complex production process. Fiber identification is usually carried out through chemical tests and microscopic tests. However, these testing processes are complicated as well as time-consuming. We propose FabricNet, a pioneering approach for the image-based textile fiber recognition system, which may have a revolutionary impact from individual to the industrial fiber recognition process. The FabricNet can recognize a large scale of fibers by only utilizing a surface image of fabric. The recognition system is constructed using a distinct category of class-based ensemble convolutional neural network (CNN) architecture. The experiment is conducted on recognizing 50 different types of textile fibers. This experiment includes a significantly large number of unique textile fibers than previous research endeavors to the best of our knowledge. We experiment with popular CNN architectures that include Inception, ResNet, VGG, MobileNet, DenseNet, and Xception. Finally, the experimental results demonstrate that FabricNet outperforms the state-of-the-art popular CNN architectures by reaching an accuracy of 84% and F1-score of 90%.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3051980</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Chemical tests ; Computer architecture ; convolutional neural network ; ensemble architecture ; Experiments ; Fabrics ; image processing ; Image recognition ; Microscopy ; Object recognition ; pattern recognition ; Surface treatment ; Textile fiber recognition ; Textile fibers ; Textiles ; Yarn</subject><ispartof>IEEE access, 2021-01, Vol.9, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b1f9832650268de892fc35838dd6221b824fa220415ad556c9c848579c015ebe3</citedby><cites>FETCH-LOGICAL-c408t-b1f9832650268de892fc35838dd6221b824fa220415ad556c9c848579c015ebe3</cites><orcidid>0000-0003-2822-2572 ; 0000-0001-7375-9040 ; 0000-0001-9698-4726 ; 0000-0001-5738-1631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9326391$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Ohi, Abu Quwsar</creatorcontrib><creatorcontrib>Mridha, M. F.</creatorcontrib><creatorcontrib>Hamid, Md. Abdul</creatorcontrib><creatorcontrib>Monowar, Muhammad Mostafa</creatorcontrib><creatorcontrib>Kateb, Faris A</creatorcontrib><title>FabricNet: A Fiber Recognition Architecture Using Ensemble ConvNets</title><title>IEEE access</title><addtitle>Access</addtitle><description>Fabric is a planar material composed of textile fibers. Textile fibers are generated from many natural sources; including plants, animals, minerals, and even, it can be synthetic. A particular fabric may contain different types of fibers that pass through a complex production process. Fiber identification is usually carried out through chemical tests and microscopic tests. However, these testing processes are complicated as well as time-consuming. We propose FabricNet, a pioneering approach for the image-based textile fiber recognition system, which may have a revolutionary impact from individual to the industrial fiber recognition process. The FabricNet can recognize a large scale of fibers by only utilizing a surface image of fabric. The recognition system is constructed using a distinct category of class-based ensemble convolutional neural network (CNN) architecture. The experiment is conducted on recognizing 50 different types of textile fibers. This experiment includes a significantly large number of unique textile fibers than previous research endeavors to the best of our knowledge. We experiment with popular CNN architectures that include Inception, ResNet, VGG, MobileNet, DenseNet, and Xception. Finally, the experimental results demonstrate that FabricNet outperforms the state-of-the-art popular CNN architectures by reaching an accuracy of 84% and F1-score of 90%.</description><subject>Artificial neural networks</subject><subject>Chemical tests</subject><subject>Computer architecture</subject><subject>convolutional neural network</subject><subject>ensemble architecture</subject><subject>Experiments</subject><subject>Fabrics</subject><subject>image processing</subject><subject>Image recognition</subject><subject>Microscopy</subject><subject>Object recognition</subject><subject>pattern recognition</subject><subject>Surface treatment</subject><subject>Textile fiber recognition</subject><subject>Textile fibers</subject><subject>Textiles</subject><subject>Yarn</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9LAzEQxRdRULSfoJcFz635s8lOvJWlVUEUrD2HbHa2ptRNTbaC397ULcW5zDDM-73hZdmYkimlRN3Nqmq-XE4ZYXTKiaAKyFl2xahUEy64PP83X2ajGDckFaSVKK-yamHq4OwL9vf5LF-4GkP-htavO9c73-WzYD9cj7bfB8xX0XXrfN5F_Ky3mFe--07CeJNdtGYbcXTs19lqMX-vHifPrw9P1ex5YgsC_aSmrQLOpCBMQoOgWGu5AA5NIxmjNbCiNYyRggrTCCGtslCAKJUlVGCN_Dp7GriNNxu9C-7ThB_tjdN_Cx_W2oTe2S1qUraNFEY2wFjiIfAWbF0WZTKRwOvEuh1Yu-C_9hh7vfH70KX3NSuAgBSKs3TFhysbfIwB25MrJfoQvh7C14fw9TH8pBoPKoeIJ0XiSa4o_wWVjnz_</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ohi, Abu Quwsar</creator><creator>Mridha, M. F.</creator><creator>Hamid, Md. Abdul</creator><creator>Monowar, Muhammad Mostafa</creator><creator>Kateb, Faris A</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2822-2572</orcidid><orcidid>https://orcid.org/0000-0001-7375-9040</orcidid><orcidid>https://orcid.org/0000-0001-9698-4726</orcidid><orcidid>https://orcid.org/0000-0001-5738-1631</orcidid></search><sort><creationdate>20210101</creationdate><title>FabricNet: A Fiber Recognition Architecture Using Ensemble ConvNets</title><author>Ohi, Abu Quwsar ; Mridha, M. F. ; Hamid, Md. Abdul ; Monowar, Muhammad Mostafa ; Kateb, Faris A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b1f9832650268de892fc35838dd6221b824fa220415ad556c9c848579c015ebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Chemical tests</topic><topic>Computer architecture</topic><topic>convolutional neural network</topic><topic>ensemble architecture</topic><topic>Experiments</topic><topic>Fabrics</topic><topic>image processing</topic><topic>Image recognition</topic><topic>Microscopy</topic><topic>Object recognition</topic><topic>pattern recognition</topic><topic>Surface treatment</topic><topic>Textile fiber recognition</topic><topic>Textile fibers</topic><topic>Textiles</topic><topic>Yarn</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ohi, Abu Quwsar</creatorcontrib><creatorcontrib>Mridha, M. F.</creatorcontrib><creatorcontrib>Hamid, Md. Abdul</creatorcontrib><creatorcontrib>Monowar, Muhammad Mostafa</creatorcontrib><creatorcontrib>Kateb, Faris A</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ohi, Abu Quwsar</au><au>Mridha, M. F.</au><au>Hamid, Md. Abdul</au><au>Monowar, Muhammad Mostafa</au><au>Kateb, Faris A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FabricNet: A Fiber Recognition Architecture Using Ensemble ConvNets</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Fabric is a planar material composed of textile fibers. Textile fibers are generated from many natural sources; including plants, animals, minerals, and even, it can be synthetic. A particular fabric may contain different types of fibers that pass through a complex production process. Fiber identification is usually carried out through chemical tests and microscopic tests. However, these testing processes are complicated as well as time-consuming. We propose FabricNet, a pioneering approach for the image-based textile fiber recognition system, which may have a revolutionary impact from individual to the industrial fiber recognition process. The FabricNet can recognize a large scale of fibers by only utilizing a surface image of fabric. The recognition system is constructed using a distinct category of class-based ensemble convolutional neural network (CNN) architecture. The experiment is conducted on recognizing 50 different types of textile fibers. This experiment includes a significantly large number of unique textile fibers than previous research endeavors to the best of our knowledge. We experiment with popular CNN architectures that include Inception, ResNet, VGG, MobileNet, DenseNet, and Xception. Finally, the experimental results demonstrate that FabricNet outperforms the state-of-the-art popular CNN architectures by reaching an accuracy of 84% and F1-score of 90%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3051980</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2822-2572</orcidid><orcidid>https://orcid.org/0000-0001-7375-9040</orcidid><orcidid>https://orcid.org/0000-0001-9698-4726</orcidid><orcidid>https://orcid.org/0000-0001-5738-1631</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2480865932
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Chemical tests
Computer architecture
convolutional neural network
ensemble architecture
Experiments
Fabrics
image processing
Image recognition
Microscopy
Object recognition
pattern recognition
Surface treatment
Textile fiber recognition
Textile fibers
Textiles
Yarn
title FabricNet: A Fiber Recognition Architecture Using Ensemble ConvNets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FabricNet:%20A%20Fiber%20Recognition%20Architecture%20Using%20Ensemble%20ConvNets&rft.jtitle=IEEE%20access&rft.au=Ohi,%20Abu%20Quwsar&rft.date=2021-01-01&rft.volume=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3051980&rft_dat=%3Cproquest_ieee_%3E2480865932%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480865932&rft_id=info:pmid/&rft_ieee_id=9326391&rft_doaj_id=oai_doaj_org_article_07fd65a6d822415e83f8cb747824683b&rfr_iscdi=true