ℤn solitons in intertwined topological phases

Topological phases of matter can support fractionalized quasiparticles localized at topological defects. The current understanding of these exotic excitations, based on the celebrated bulk-defect correspondence, typically relies on crude approximations where such defects are replaced by a static cla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-12, Vol.102 (24)
Hauptverfasser: González-Cuadra, D, Dauphin, A, Grzybowski, P R, Lewenstein, M, Bermudez, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topological phases of matter can support fractionalized quasiparticles localized at topological defects. The current understanding of these exotic excitations, based on the celebrated bulk-defect correspondence, typically relies on crude approximations where such defects are replaced by a static classical background coupled to the matter sector. In this work, we explore the strongly correlated nature of symmetry-protected topological defects by focusing on situations where such defects arise spontaneously as dynamical solitons in intertwined topological phases, where symmetry breaking coexists with topological symmetry protection. In particular, we focus on the ℤ2 Bose-Hubbard model, a one-dimensional chain of interacting bosons coupled to ℤ2 fields, and show how solitons with ℤn topological charges appear for particle/hole dopings about certain commensurate fillings, extending the results in D. González-Cuadra et al. [Phys. Rev. Lett. 125, 265301 (2020)] beyond half filling. We show that these defects host fractionalized bosonic quasiparticles, forming bound states that travel through the system unless externally pinned, and repel each other giving rise to a fractional soliton lattice for sufficiently high densities. Moreover, we uncover the topological origin of these fractional bound excitations through a pumping mechanism, where the quantization of the intersoliton transport allows us to establish a generalized bulk-defect correspondence. This in-depth analysis of dynamical topological defects bound to fractionalized quasiparticles, together with the possibility of implementing our model in cold-atomic experiments, paves the way for further exploration of exotic topological phenomena in strongly correlated systems.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.245137