Topological realizations of groups in Alexandroff spaces

We prove that every group can be realized as the homeomorphism group and as the group of (pointed) homotopy classes of (pointed) self-homotopy equivalences of infinitely many non-homotopy-equivalent Alexandroff spaces.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2021, Vol.115 (1), Article 25
Hauptverfasser: Chocano, Pedro J., Morón, Manuel A., Ruiz del Portal, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 115
creator Chocano, Pedro J.
Morón, Manuel A.
Ruiz del Portal, Francisco
description We prove that every group can be realized as the homeomorphism group and as the group of (pointed) homotopy classes of (pointed) self-homotopy equivalences of infinitely many non-homotopy-equivalent Alexandroff spaces.
doi_str_mv 10.1007/s13398-020-00964-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480787553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480787553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1fbf2cdfe8ede47db09ee6adac7522375720f726b430cf69404876bb6a91dc3b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKcFz9FJstlJjqX4p1DwUs8hm03KlnWzJi2on95tV_DmXGYO773h_Qi5ZXDPAPAhMyG0osCBAuiqpHhBZkyipkyCvDzfiqIAcU0WOe9hHMFKBTgjahuH2MVd62xXJG-79tse2tjnIoZil-JxyEXbF8vOf9q-STGEIg_W-XxDroLtsl_87jl5e3rcrl7o5vV5vVpuqBNMHygLdeCuCV75xpfY1KC9r2xjHUrOBUrkEJBXdSnAhUqXUCqs6rqymjVO1GJO7qbcIcWPo88Hs4_H1I8vDT9VUCilGFV8UrkUc04-mCG17zZ9GQbmBMlMkMwIyZwhGRxNYjLlUdzvfPqL_sf1A9GEadg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480787553</pqid></control><display><type>article</type><title>Topological realizations of groups in Alexandroff spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Chocano, Pedro J. ; Morón, Manuel A. ; Ruiz del Portal, Francisco</creator><creatorcontrib>Chocano, Pedro J. ; Morón, Manuel A. ; Ruiz del Portal, Francisco</creatorcontrib><description>We prove that every group can be realized as the homeomorphism group and as the group of (pointed) homotopy classes of (pointed) self-homotopy equivalences of infinitely many non-homotopy-equivalent Alexandroff spaces.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-020-00964-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Equivalence ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Theoretical ; Topology</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2021, Vol.115 (1), Article 25</ispartof><rights>The Royal Academy of Sciences, Madrid 2020</rights><rights>The Royal Academy of Sciences, Madrid 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-1fbf2cdfe8ede47db09ee6adac7522375720f726b430cf69404876bb6a91dc3b3</citedby><cites>FETCH-LOGICAL-c319t-1fbf2cdfe8ede47db09ee6adac7522375720f726b430cf69404876bb6a91dc3b3</cites><orcidid>0000-0003-1163-9291 ; 0000-0001-5476-0193 ; 0000-0003-0447-7212</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-020-00964-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-020-00964-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Chocano, Pedro J.</creatorcontrib><creatorcontrib>Morón, Manuel A.</creatorcontrib><creatorcontrib>Ruiz del Portal, Francisco</creatorcontrib><title>Topological realizations of groups in Alexandroff spaces</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>RACSAM</addtitle><description>We prove that every group can be realized as the homeomorphism group and as the group of (pointed) homotopy classes of (pointed) self-homotopy equivalences of infinitely many non-homotopy-equivalent Alexandroff spaces.</description><subject>Applications of Mathematics</subject><subject>Equivalence</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Theoretical</subject><subject>Topology</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gKcFz9FJstlJjqX4p1DwUs8hm03KlnWzJi2on95tV_DmXGYO773h_Qi5ZXDPAPAhMyG0osCBAuiqpHhBZkyipkyCvDzfiqIAcU0WOe9hHMFKBTgjahuH2MVd62xXJG-79tse2tjnIoZil-JxyEXbF8vOf9q-STGEIg_W-XxDroLtsl_87jl5e3rcrl7o5vV5vVpuqBNMHygLdeCuCV75xpfY1KC9r2xjHUrOBUrkEJBXdSnAhUqXUCqs6rqymjVO1GJO7qbcIcWPo88Hs4_H1I8vDT9VUCilGFV8UrkUc04-mCG17zZ9GQbmBMlMkMwIyZwhGRxNYjLlUdzvfPqL_sf1A9GEadg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chocano, Pedro J.</creator><creator>Morón, Manuel A.</creator><creator>Ruiz del Portal, Francisco</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1163-9291</orcidid><orcidid>https://orcid.org/0000-0001-5476-0193</orcidid><orcidid>https://orcid.org/0000-0003-0447-7212</orcidid></search><sort><creationdate>2021</creationdate><title>Topological realizations of groups in Alexandroff spaces</title><author>Chocano, Pedro J. ; Morón, Manuel A. ; Ruiz del Portal, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1fbf2cdfe8ede47db09ee6adac7522375720f726b430cf69404876bb6a91dc3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Mathematics</topic><topic>Equivalence</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Theoretical</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chocano, Pedro J.</creatorcontrib><creatorcontrib>Morón, Manuel A.</creatorcontrib><creatorcontrib>Ruiz del Portal, Francisco</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chocano, Pedro J.</au><au>Morón, Manuel A.</au><au>Ruiz del Portal, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological realizations of groups in Alexandroff spaces</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>RACSAM</stitle><date>2021</date><risdate>2021</risdate><volume>115</volume><issue>1</issue><artnum>25</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>We prove that every group can be realized as the homeomorphism group and as the group of (pointed) homotopy classes of (pointed) self-homotopy equivalences of infinitely many non-homotopy-equivalent Alexandroff spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-020-00964-7</doi><orcidid>https://orcid.org/0000-0003-1163-9291</orcidid><orcidid>https://orcid.org/0000-0001-5476-0193</orcidid><orcidid>https://orcid.org/0000-0003-0447-7212</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2021, Vol.115 (1), Article 25
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2480787553
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Equivalence
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Original Paper
Theoretical
Topology
title Topological realizations of groups in Alexandroff spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A32%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20realizations%20of%20groups%20in%20Alexandroff%20spaces&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Chocano,%20Pedro%20J.&rft.date=2021&rft.volume=115&rft.issue=1&rft.artnum=25&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-020-00964-7&rft_dat=%3Cproquest_cross%3E2480787553%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480787553&rft_id=info:pmid/&rfr_iscdi=true