A systematic literature review on hardware implementation of artificial intelligence algorithms

Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2021-02, Vol.77 (2), p.1897-1938
Hauptverfasser: Talib, Manar Abu, Majzoub, Sohaib, Nasir, Qassim, Jamal, Dina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1938
container_issue 2
container_start_page 1897
container_title The Journal of supercomputing
container_volume 77
creator Talib, Manar Abu
Majzoub, Sohaib
Nasir, Qassim
Jamal, Dina
description Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed.
doi_str_mv 10.1007/s11227-020-03325-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480787506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480787506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9d41f7f1b19c111ef3c92c37c53769fd70eece17a342861424d509bf7ac436d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgevTkMpOZZSneoOBG1yHNnLQpc6lJaunbGx3BnasD__n-c-Aj5IbBHQNQ95ExzlUBHAoQgpdFfUJmrFSiAFnLUzKDJq_qUvJzchHjFgCkUGJG9JzGY0zYm-Qt7XzCYNI-IA346fFAx4FuTGgPJke-33XY45Aym_PRUROSd95601E_JOw6v8bBIjXdegw-bfp4Rc6c6SJe_85L8v748LZ4LpavTy-L-bKwgjWpaJtWMqccW7HGMsbQCdtwK5Qthaoa1ypAtMiUEZLXFZNctiU0K6eMlaJqxSW5ne7uwvixx5j0dtyHIb_UXNagalVClSk-UTaMMQZ0ehd8b8JRM9DfIvUkUmeR-kekrnNJTKWY4WGN4e_0P60vhHF3rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480787506</pqid></control><display><type>article</type><title>A systematic literature review on hardware implementation of artificial intelligence algorithms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Talib, Manar Abu ; Majzoub, Sohaib ; Nasir, Qassim ; Jamal, Dina</creator><creatorcontrib>Talib, Manar Abu ; Majzoub, Sohaib ; Nasir, Qassim ; Jamal, Dina</creatorcontrib><description>Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03325-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accelerators ; Algorithms ; Artificial intelligence ; Compilers ; Computer Science ; Hardware ; Interpreters ; Literature reviews ; Machine learning ; Processor Architectures ; Programming Languages ; Scientific papers ; Systematic review</subject><ispartof>The Journal of supercomputing, 2021-02, Vol.77 (2), p.1897-1938</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9d41f7f1b19c111ef3c92c37c53769fd70eece17a342861424d509bf7ac436d3</citedby><cites>FETCH-LOGICAL-c319t-d9d41f7f1b19c111ef3c92c37c53769fd70eece17a342861424d509bf7ac436d3</cites><orcidid>0000-0002-2837-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-020-03325-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-020-03325-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Talib, Manar Abu</creatorcontrib><creatorcontrib>Majzoub, Sohaib</creatorcontrib><creatorcontrib>Nasir, Qassim</creatorcontrib><creatorcontrib>Jamal, Dina</creatorcontrib><title>A systematic literature review on hardware implementation of artificial intelligence algorithms</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed.</description><subject>Accelerators</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Hardware</subject><subject>Interpreters</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Scientific papers</subject><subject>Systematic review</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CrgevTkMpOZZSneoOBG1yHNnLQpc6lJaunbGx3BnasD__n-c-Aj5IbBHQNQ95ExzlUBHAoQgpdFfUJmrFSiAFnLUzKDJq_qUvJzchHjFgCkUGJG9JzGY0zYm-Qt7XzCYNI-IA346fFAx4FuTGgPJke-33XY45Aym_PRUROSd95601E_JOw6v8bBIjXdegw-bfp4Rc6c6SJe_85L8v748LZ4LpavTy-L-bKwgjWpaJtWMqccW7HGMsbQCdtwK5Qthaoa1ypAtMiUEZLXFZNctiU0K6eMlaJqxSW5ne7uwvixx5j0dtyHIb_UXNagalVClSk-UTaMMQZ0ehd8b8JRM9DfIvUkUmeR-kekrnNJTKWY4WGN4e_0P60vhHF3rw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Talib, Manar Abu</creator><creator>Majzoub, Sohaib</creator><creator>Nasir, Qassim</creator><creator>Jamal, Dina</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2837-3402</orcidid></search><sort><creationdate>20210201</creationdate><title>A systematic literature review on hardware implementation of artificial intelligence algorithms</title><author>Talib, Manar Abu ; Majzoub, Sohaib ; Nasir, Qassim ; Jamal, Dina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9d41f7f1b19c111ef3c92c37c53769fd70eece17a342861424d509bf7ac436d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerators</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Hardware</topic><topic>Interpreters</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Scientific papers</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talib, Manar Abu</creatorcontrib><creatorcontrib>Majzoub, Sohaib</creatorcontrib><creatorcontrib>Nasir, Qassim</creatorcontrib><creatorcontrib>Jamal, Dina</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talib, Manar Abu</au><au>Majzoub, Sohaib</au><au>Nasir, Qassim</au><au>Jamal, Dina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic literature review on hardware implementation of artificial intelligence algorithms</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>77</volume><issue>2</issue><spage>1897</spage><epage>1938</epage><pages>1897-1938</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03325-8</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-2837-3402</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2021-02, Vol.77 (2), p.1897-1938
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2480787506
source SpringerLink Journals - AutoHoldings
subjects Accelerators
Algorithms
Artificial intelligence
Compilers
Computer Science
Hardware
Interpreters
Literature reviews
Machine learning
Processor Architectures
Programming Languages
Scientific papers
Systematic review
title A systematic literature review on hardware implementation of artificial intelligence algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20literature%20review%20on%20hardware%20implementation%20of%20artificial%20intelligence%20algorithms&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Talib,%20Manar%20Abu&rft.date=2021-02-01&rft.volume=77&rft.issue=2&rft.spage=1897&rft.epage=1938&rft.pages=1897-1938&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03325-8&rft_dat=%3Cproquest_cross%3E2480787506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480787506&rft_id=info:pmid/&rfr_iscdi=true