A systematic literature review on hardware implementation of artificial intelligence algorithms
Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other d...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2021-02, Vol.77 (2), p.1897-1938 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1938 |
---|---|
container_issue | 2 |
container_start_page | 1897 |
container_title | The Journal of supercomputing |
container_volume | 77 |
creator | Talib, Manar Abu Majzoub, Sohaib Nasir, Qassim Jamal, Dina |
description | Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed. |
doi_str_mv | 10.1007/s11227-020-03325-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480787506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480787506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d9d41f7f1b19c111ef3c92c37c53769fd70eece17a342861424d509bf7ac436d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgevTkMpOZZSneoOBG1yHNnLQpc6lJaunbGx3BnasD__n-c-Aj5IbBHQNQ95ExzlUBHAoQgpdFfUJmrFSiAFnLUzKDJq_qUvJzchHjFgCkUGJG9JzGY0zYm-Qt7XzCYNI-IA346fFAx4FuTGgPJke-33XY45Aym_PRUROSd95601E_JOw6v8bBIjXdegw-bfp4Rc6c6SJe_85L8v748LZ4LpavTy-L-bKwgjWpaJtWMqccW7HGMsbQCdtwK5Qthaoa1ypAtMiUEZLXFZNctiU0K6eMlaJqxSW5ne7uwvixx5j0dtyHIb_UXNagalVClSk-UTaMMQZ0ehd8b8JRM9DfIvUkUmeR-kekrnNJTKWY4WGN4e_0P60vhHF3rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480787506</pqid></control><display><type>article</type><title>A systematic literature review on hardware implementation of artificial intelligence algorithms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Talib, Manar Abu ; Majzoub, Sohaib ; Nasir, Qassim ; Jamal, Dina</creator><creatorcontrib>Talib, Manar Abu ; Majzoub, Sohaib ; Nasir, Qassim ; Jamal, Dina</creatorcontrib><description>Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-020-03325-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accelerators ; Algorithms ; Artificial intelligence ; Compilers ; Computer Science ; Hardware ; Interpreters ; Literature reviews ; Machine learning ; Processor Architectures ; Programming Languages ; Scientific papers ; Systematic review</subject><ispartof>The Journal of supercomputing, 2021-02, Vol.77 (2), p.1897-1938</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d9d41f7f1b19c111ef3c92c37c53769fd70eece17a342861424d509bf7ac436d3</citedby><cites>FETCH-LOGICAL-c319t-d9d41f7f1b19c111ef3c92c37c53769fd70eece17a342861424d509bf7ac436d3</cites><orcidid>0000-0002-2837-3402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-020-03325-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-020-03325-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Talib, Manar Abu</creatorcontrib><creatorcontrib>Majzoub, Sohaib</creatorcontrib><creatorcontrib>Nasir, Qassim</creatorcontrib><creatorcontrib>Jamal, Dina</creatorcontrib><title>A systematic literature review on hardware implementation of artificial intelligence algorithms</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed.</description><subject>Accelerators</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Hardware</subject><subject>Interpreters</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Scientific papers</subject><subject>Systematic review</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWC8v4CrgevTkMpOZZSneoOBG1yHNnLQpc6lJaunbGx3BnasD__n-c-Aj5IbBHQNQ95ExzlUBHAoQgpdFfUJmrFSiAFnLUzKDJq_qUvJzchHjFgCkUGJG9JzGY0zYm-Qt7XzCYNI-IA346fFAx4FuTGgPJke-33XY45Aym_PRUROSd95601E_JOw6v8bBIjXdegw-bfp4Rc6c6SJe_85L8v748LZ4LpavTy-L-bKwgjWpaJtWMqccW7HGMsbQCdtwK5Qthaoa1ypAtMiUEZLXFZNctiU0K6eMlaJqxSW5ne7uwvixx5j0dtyHIb_UXNagalVClSk-UTaMMQZ0ehd8b8JRM9DfIvUkUmeR-kekrnNJTKWY4WGN4e_0P60vhHF3rw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Talib, Manar Abu</creator><creator>Majzoub, Sohaib</creator><creator>Nasir, Qassim</creator><creator>Jamal, Dina</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2837-3402</orcidid></search><sort><creationdate>20210201</creationdate><title>A systematic literature review on hardware implementation of artificial intelligence algorithms</title><author>Talib, Manar Abu ; Majzoub, Sohaib ; Nasir, Qassim ; Jamal, Dina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d9d41f7f1b19c111ef3c92c37c53769fd70eece17a342861424d509bf7ac436d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accelerators</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Hardware</topic><topic>Interpreters</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Scientific papers</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talib, Manar Abu</creatorcontrib><creatorcontrib>Majzoub, Sohaib</creatorcontrib><creatorcontrib>Nasir, Qassim</creatorcontrib><creatorcontrib>Jamal, Dina</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talib, Manar Abu</au><au>Majzoub, Sohaib</au><au>Nasir, Qassim</au><au>Jamal, Dina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A systematic literature review on hardware implementation of artificial intelligence algorithms</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>77</volume><issue>2</issue><spage>1897</spage><epage>1938</epage><pages>1897-1938</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>Artificial intelligence (AI) and machine learning (ML) tools play a significant role in the recent evolution of smart systems. AI solutions are pushing towards a significant shift in many fields such as healthcare, autonomous airplanes and vehicles, security, marketing customer profiling and other diverse areas. One of the main challenges hindering the AI potential is the demand for high-performance computation resources. Recently, hardware accelerators are developed in order to provide the needed computational power for the AI and ML tools. In the literature, hardware accelerators are built using FPGAs, GPUs and ASICs to accelerate computationally intensive tasks. These accelerators provide high-performance hardware while preserving the required accuracy. In this work, we present a systematic literature review that focuses on exploring the available hardware accelerators for the AI and ML tools. More than 169 different research papers published between the years 2009 and 2019 are studied and analysed.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-020-03325-8</doi><tpages>42</tpages><orcidid>https://orcid.org/0000-0002-2837-3402</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2021-02, Vol.77 (2), p.1897-1938 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2480787506 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accelerators Algorithms Artificial intelligence Compilers Computer Science Hardware Interpreters Literature reviews Machine learning Processor Architectures Programming Languages Scientific papers Systematic review |
title | A systematic literature review on hardware implementation of artificial intelligence algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A16%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20systematic%20literature%20review%20on%20hardware%20implementation%20of%20artificial%20intelligence%20algorithms&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Talib,%20Manar%20Abu&rft.date=2021-02-01&rft.volume=77&rft.issue=2&rft.spage=1897&rft.epage=1938&rft.pages=1897-1938&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-020-03325-8&rft_dat=%3Cproquest_cross%3E2480787506%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480787506&rft_id=info:pmid/&rfr_iscdi=true |