Diazotrophic Community Variation Underlies Differences in Nitrogen Fixation Potential in Paddy Soils Across a Climatic Gradient in China

Biological nitrogen (N₂) fixation as a source of new N input into the soil by free-living diazotrophs is important for achieving sustainable rice agriculture. However, the dominant environmental drivers or factors influencing N₂ fixation and the functional significance of the diazotroph community st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial ecology 2021-02, Vol.81 (2), p.425-436
Hauptverfasser: Wu, Chuanfa, Wei, Xiaomeng, Hu, Ziye, Liu, Yi, Hu, Yajun, Qin, Hongling, Chen, Xiangbi, Wu, Jinshui, Ge, Tida, Zhran, Mostafa, Su, Yirong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 436
container_issue 2
container_start_page 425
container_title Microbial ecology
container_volume 81
creator Wu, Chuanfa
Wei, Xiaomeng
Hu, Ziye
Liu, Yi
Hu, Yajun
Qin, Hongling
Chen, Xiangbi
Wu, Jinshui
Ge, Tida
Zhran, Mostafa
Su, Yirong
description Biological nitrogen (N₂) fixation as a source of new N input into the soil by free-living diazotrophs is important for achieving sustainable rice agriculture. However, the dominant environmental drivers or factors influencing N₂ fixation and the functional significance of the diazotroph community structure in paddy soil across a climatic gradient are not yet well understood. Thus, we characterized the diazotroph community and identified the ecological predictors of N₂ fixation potential in four different climate zones (mid-temperate, warm-temperate, subtropical, and tropical paddy soils) in eastern China. Comprehensive nifH gene sequencing, functional activity detection, and correlation analysis with environmental factors were estimated. The potential nitrogenase activity (PNA) was highest in warm-temperate regions, where it was 6.2-, 2.9-, and 2.2-fold greater than in the tropical, subtropical, and mid-temperate regions, respectively; nifH gene abundance was significantly higher in warm-temperate and subtropical zones than in the tropical ormid-temperate zones. Diazotroph diversitywas significantly higher in the tropical climate zone and significantly lower in the mid-temperate zone. Non-metric multidimensional scaling and canonical correlation analysis indicated that paddy soil diazotroph populations differed significantly among the four climate zones, mainly owing to differences in climate and soil pH. Structural equation models and automatic linear models revealed that climate and nutrients indirectly affected PNA by affecting soil pH and diazotroph community, respectively, while diazotroph community, C/P, and nifH gene abundance directly affected PNA. And C/P ratio, pH, and the diazotroph community structure were the main predictors of PNA in paddy soils. Collectively, the differences in diazotroph community structure have ecological significance, with important implications for the prediction of soil N₂-fixing functions under climate change scenarios.
doi_str_mv 10.1007/s00248-020-01591-w
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480552308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27291110</jstor_id><sourcerecordid>27291110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-511c728dfa31476d1885d6952be7fe04cc0ff5bb58ab1becca4ef0b4d5b26a7b3</originalsourceid><addsrcrecordid>eNp9kF1rFDEUhoModq3-AUEJeD16kkxmMpdlaqtQtKAV70I-2yyzyZrMUtdf4M8226n1zqsEzvO-5_Ag9JLAWwLQvysAtBUNUGiA8IE0t4_QirSMNkS03x-jFcDAG9ZRcYSelbIGIH1H2VN0xOgAhIl-hX6fBvUrzTltb4LBY9psdjHMe_xN5aDmkCK-itblKbiCT4P3Lrto6j9E_CnU2LWL-Cz8XNDLNLs4BzUdxpfK2j3-ksJU8InJqRSs8DiFTWUNPs_KhgofyPEmRPUcPfFqKu7F_XuMrs7efx0_NBefzz-OJxeNaTs2N5wQ01NhvWKk7TtLhOC2GzjVrvcOWmPAe641F0oT7YxRrfOgW8s17VSv2TF6s_Ruc_qxc2WW67TLsa6UVSZwThmIStGFujs8Oy-3uV6e95KAPMiXi3xZ5cs7-fK2hl7fV-_0xtmHyF_bFWALUOooXrv8b_d_a18tqXWZU35opT0dCCHA_gBuwJxL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480552308</pqid></control><display><type>article</type><title>Diazotrophic Community Variation Underlies Differences in Nitrogen Fixation Potential in Paddy Soils Across a Climatic Gradient in China</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wu, Chuanfa ; Wei, Xiaomeng ; Hu, Ziye ; Liu, Yi ; Hu, Yajun ; Qin, Hongling ; Chen, Xiangbi ; Wu, Jinshui ; Ge, Tida ; Zhran, Mostafa ; Su, Yirong</creator><creatorcontrib>Wu, Chuanfa ; Wei, Xiaomeng ; Hu, Ziye ; Liu, Yi ; Hu, Yajun ; Qin, Hongling ; Chen, Xiangbi ; Wu, Jinshui ; Ge, Tida ; Zhran, Mostafa ; Su, Yirong</creatorcontrib><description>Biological nitrogen (N₂) fixation as a source of new N input into the soil by free-living diazotrophs is important for achieving sustainable rice agriculture. However, the dominant environmental drivers or factors influencing N₂ fixation and the functional significance of the diazotroph community structure in paddy soil across a climatic gradient are not yet well understood. Thus, we characterized the diazotroph community and identified the ecological predictors of N₂ fixation potential in four different climate zones (mid-temperate, warm-temperate, subtropical, and tropical paddy soils) in eastern China. Comprehensive nifH gene sequencing, functional activity detection, and correlation analysis with environmental factors were estimated. The potential nitrogenase activity (PNA) was highest in warm-temperate regions, where it was 6.2-, 2.9-, and 2.2-fold greater than in the tropical, subtropical, and mid-temperate regions, respectively; nifH gene abundance was significantly higher in warm-temperate and subtropical zones than in the tropical ormid-temperate zones. Diazotroph diversitywas significantly higher in the tropical climate zone and significantly lower in the mid-temperate zone. Non-metric multidimensional scaling and canonical correlation analysis indicated that paddy soil diazotroph populations differed significantly among the four climate zones, mainly owing to differences in climate and soil pH. Structural equation models and automatic linear models revealed that climate and nutrients indirectly affected PNA by affecting soil pH and diazotroph community, respectively, while diazotroph community, C/P, and nifH gene abundance directly affected PNA. And C/P ratio, pH, and the diazotroph community structure were the main predictors of PNA in paddy soils. Collectively, the differences in diazotroph community structure have ecological significance, with important implications for the prediction of soil N₂-fixing functions under climate change scenarios.</description><identifier>ISSN: 0095-3628</identifier><identifier>EISSN: 1432-184X</identifier><identifier>DOI: 10.1007/s00248-020-01591-w</identifier><identifier>PMID: 32901387</identifier><language>eng</language><publisher>New York: Springer Science + Business Media</publisher><subject>Abundance ; Biomedical and Life Sciences ; Climate change ; Climate models ; Community structure ; Correlation analysis ; Ecology ; Environmental factors ; Gene sequencing ; Geoecology/Natural Processes ; Life Sciences ; Microbial Ecology ; Microbiology ; Multidimensional scaling ; Multivariate statistical analysis ; Nature Conservation ; NifH gene ; Nitrogen ; Nitrogen fixation ; Nitrogenase ; Nitrogenation ; Nutrients ; pH effects ; Regions ; Rice fields ; Scaling ; Soil ; Soil chemistry ; SOIL MICROBIOLOGY ; Soil pH ; Soil structure ; Soils ; Subtropical zones ; Temperate zones ; Tropical climate ; Water Quality/Water Pollution</subject><ispartof>Microbial ecology, 2021-02, Vol.81 (2), p.425-436</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-511c728dfa31476d1885d6952be7fe04cc0ff5bb58ab1becca4ef0b4d5b26a7b3</citedby><cites>FETCH-LOGICAL-c463t-511c728dfa31476d1885d6952be7fe04cc0ff5bb58ab1becca4ef0b4d5b26a7b3</cites><orcidid>0000-0002-5688-1324</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00248-020-01591-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00248-020-01591-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32901387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Chuanfa</creatorcontrib><creatorcontrib>Wei, Xiaomeng</creatorcontrib><creatorcontrib>Hu, Ziye</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Hu, Yajun</creatorcontrib><creatorcontrib>Qin, Hongling</creatorcontrib><creatorcontrib>Chen, Xiangbi</creatorcontrib><creatorcontrib>Wu, Jinshui</creatorcontrib><creatorcontrib>Ge, Tida</creatorcontrib><creatorcontrib>Zhran, Mostafa</creatorcontrib><creatorcontrib>Su, Yirong</creatorcontrib><title>Diazotrophic Community Variation Underlies Differences in Nitrogen Fixation Potential in Paddy Soils Across a Climatic Gradient in China</title><title>Microbial ecology</title><addtitle>Microb Ecol</addtitle><addtitle>Microb Ecol</addtitle><description>Biological nitrogen (N₂) fixation as a source of new N input into the soil by free-living diazotrophs is important for achieving sustainable rice agriculture. However, the dominant environmental drivers or factors influencing N₂ fixation and the functional significance of the diazotroph community structure in paddy soil across a climatic gradient are not yet well understood. Thus, we characterized the diazotroph community and identified the ecological predictors of N₂ fixation potential in four different climate zones (mid-temperate, warm-temperate, subtropical, and tropical paddy soils) in eastern China. Comprehensive nifH gene sequencing, functional activity detection, and correlation analysis with environmental factors were estimated. The potential nitrogenase activity (PNA) was highest in warm-temperate regions, where it was 6.2-, 2.9-, and 2.2-fold greater than in the tropical, subtropical, and mid-temperate regions, respectively; nifH gene abundance was significantly higher in warm-temperate and subtropical zones than in the tropical ormid-temperate zones. Diazotroph diversitywas significantly higher in the tropical climate zone and significantly lower in the mid-temperate zone. Non-metric multidimensional scaling and canonical correlation analysis indicated that paddy soil diazotroph populations differed significantly among the four climate zones, mainly owing to differences in climate and soil pH. Structural equation models and automatic linear models revealed that climate and nutrients indirectly affected PNA by affecting soil pH and diazotroph community, respectively, while diazotroph community, C/P, and nifH gene abundance directly affected PNA. And C/P ratio, pH, and the diazotroph community structure were the main predictors of PNA in paddy soils. Collectively, the differences in diazotroph community structure have ecological significance, with important implications for the prediction of soil N₂-fixing functions under climate change scenarios.</description><subject>Abundance</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Community structure</subject><subject>Correlation analysis</subject><subject>Ecology</subject><subject>Environmental factors</subject><subject>Gene sequencing</subject><subject>Geoecology/Natural Processes</subject><subject>Life Sciences</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Multidimensional scaling</subject><subject>Multivariate statistical analysis</subject><subject>Nature Conservation</subject><subject>NifH gene</subject><subject>Nitrogen</subject><subject>Nitrogen fixation</subject><subject>Nitrogenase</subject><subject>Nitrogenation</subject><subject>Nutrients</subject><subject>pH effects</subject><subject>Regions</subject><subject>Rice fields</subject><subject>Scaling</subject><subject>Soil</subject><subject>Soil chemistry</subject><subject>SOIL MICROBIOLOGY</subject><subject>Soil pH</subject><subject>Soil structure</subject><subject>Soils</subject><subject>Subtropical zones</subject><subject>Temperate zones</subject><subject>Tropical climate</subject><subject>Water Quality/Water Pollution</subject><issn>0095-3628</issn><issn>1432-184X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kF1rFDEUhoModq3-AUEJeD16kkxmMpdlaqtQtKAV70I-2yyzyZrMUtdf4M8226n1zqsEzvO-5_Ag9JLAWwLQvysAtBUNUGiA8IE0t4_QirSMNkS03x-jFcDAG9ZRcYSelbIGIH1H2VN0xOgAhIl-hX6fBvUrzTltb4LBY9psdjHMe_xN5aDmkCK-itblKbiCT4P3Lrto6j9E_CnU2LWL-Cz8XNDLNLs4BzUdxpfK2j3-ksJU8InJqRSs8DiFTWUNPs_KhgofyPEmRPUcPfFqKu7F_XuMrs7efx0_NBefzz-OJxeNaTs2N5wQ01NhvWKk7TtLhOC2GzjVrvcOWmPAe641F0oT7YxRrfOgW8s17VSv2TF6s_Ruc_qxc2WW67TLsa6UVSZwThmIStGFujs8Oy-3uV6e95KAPMiXi3xZ5cs7-fK2hl7fV-_0xtmHyF_bFWALUOooXrv8b_d_a18tqXWZU35opT0dCCHA_gBuwJxL</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Wu, Chuanfa</creator><creator>Wei, Xiaomeng</creator><creator>Hu, Ziye</creator><creator>Liu, Yi</creator><creator>Hu, Yajun</creator><creator>Qin, Hongling</creator><creator>Chen, Xiangbi</creator><creator>Wu, Jinshui</creator><creator>Ge, Tida</creator><creator>Zhran, Mostafa</creator><creator>Su, Yirong</creator><general>Springer Science + Business Media</general><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-5688-1324</orcidid></search><sort><creationdate>20210201</creationdate><title>Diazotrophic Community Variation Underlies Differences in Nitrogen Fixation Potential in Paddy Soils Across a Climatic Gradient in China</title><author>Wu, Chuanfa ; Wei, Xiaomeng ; Hu, Ziye ; Liu, Yi ; Hu, Yajun ; Qin, Hongling ; Chen, Xiangbi ; Wu, Jinshui ; Ge, Tida ; Zhran, Mostafa ; Su, Yirong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-511c728dfa31476d1885d6952be7fe04cc0ff5bb58ab1becca4ef0b4d5b26a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abundance</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Community structure</topic><topic>Correlation analysis</topic><topic>Ecology</topic><topic>Environmental factors</topic><topic>Gene sequencing</topic><topic>Geoecology/Natural Processes</topic><topic>Life Sciences</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Multidimensional scaling</topic><topic>Multivariate statistical analysis</topic><topic>Nature Conservation</topic><topic>NifH gene</topic><topic>Nitrogen</topic><topic>Nitrogen fixation</topic><topic>Nitrogenase</topic><topic>Nitrogenation</topic><topic>Nutrients</topic><topic>pH effects</topic><topic>Regions</topic><topic>Rice fields</topic><topic>Scaling</topic><topic>Soil</topic><topic>Soil chemistry</topic><topic>SOIL MICROBIOLOGY</topic><topic>Soil pH</topic><topic>Soil structure</topic><topic>Soils</topic><topic>Subtropical zones</topic><topic>Temperate zones</topic><topic>Tropical climate</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chuanfa</creatorcontrib><creatorcontrib>Wei, Xiaomeng</creatorcontrib><creatorcontrib>Hu, Ziye</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Hu, Yajun</creatorcontrib><creatorcontrib>Qin, Hongling</creatorcontrib><creatorcontrib>Chen, Xiangbi</creatorcontrib><creatorcontrib>Wu, Jinshui</creatorcontrib><creatorcontrib>Ge, Tida</creatorcontrib><creatorcontrib>Zhran, Mostafa</creatorcontrib><creatorcontrib>Su, Yirong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Microbial ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chuanfa</au><au>Wei, Xiaomeng</au><au>Hu, Ziye</au><au>Liu, Yi</au><au>Hu, Yajun</au><au>Qin, Hongling</au><au>Chen, Xiangbi</au><au>Wu, Jinshui</au><au>Ge, Tida</au><au>Zhran, Mostafa</au><au>Su, Yirong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diazotrophic Community Variation Underlies Differences in Nitrogen Fixation Potential in Paddy Soils Across a Climatic Gradient in China</atitle><jtitle>Microbial ecology</jtitle><stitle>Microb Ecol</stitle><addtitle>Microb Ecol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>81</volume><issue>2</issue><spage>425</spage><epage>436</epage><pages>425-436</pages><issn>0095-3628</issn><eissn>1432-184X</eissn><abstract>Biological nitrogen (N₂) fixation as a source of new N input into the soil by free-living diazotrophs is important for achieving sustainable rice agriculture. However, the dominant environmental drivers or factors influencing N₂ fixation and the functional significance of the diazotroph community structure in paddy soil across a climatic gradient are not yet well understood. Thus, we characterized the diazotroph community and identified the ecological predictors of N₂ fixation potential in four different climate zones (mid-temperate, warm-temperate, subtropical, and tropical paddy soils) in eastern China. Comprehensive nifH gene sequencing, functional activity detection, and correlation analysis with environmental factors were estimated. The potential nitrogenase activity (PNA) was highest in warm-temperate regions, where it was 6.2-, 2.9-, and 2.2-fold greater than in the tropical, subtropical, and mid-temperate regions, respectively; nifH gene abundance was significantly higher in warm-temperate and subtropical zones than in the tropical ormid-temperate zones. Diazotroph diversitywas significantly higher in the tropical climate zone and significantly lower in the mid-temperate zone. Non-metric multidimensional scaling and canonical correlation analysis indicated that paddy soil diazotroph populations differed significantly among the four climate zones, mainly owing to differences in climate and soil pH. Structural equation models and automatic linear models revealed that climate and nutrients indirectly affected PNA by affecting soil pH and diazotroph community, respectively, while diazotroph community, C/P, and nifH gene abundance directly affected PNA. And C/P ratio, pH, and the diazotroph community structure were the main predictors of PNA in paddy soils. Collectively, the differences in diazotroph community structure have ecological significance, with important implications for the prediction of soil N₂-fixing functions under climate change scenarios.</abstract><cop>New York</cop><pub>Springer Science + Business Media</pub><pmid>32901387</pmid><doi>10.1007/s00248-020-01591-w</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5688-1324</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0095-3628
ispartof Microbial ecology, 2021-02, Vol.81 (2), p.425-436
issn 0095-3628
1432-184X
language eng
recordid cdi_proquest_journals_2480552308
source SpringerLink Journals - AutoHoldings
subjects Abundance
Biomedical and Life Sciences
Climate change
Climate models
Community structure
Correlation analysis
Ecology
Environmental factors
Gene sequencing
Geoecology/Natural Processes
Life Sciences
Microbial Ecology
Microbiology
Multidimensional scaling
Multivariate statistical analysis
Nature Conservation
NifH gene
Nitrogen
Nitrogen fixation
Nitrogenase
Nitrogenation
Nutrients
pH effects
Regions
Rice fields
Scaling
Soil
Soil chemistry
SOIL MICROBIOLOGY
Soil pH
Soil structure
Soils
Subtropical zones
Temperate zones
Tropical climate
Water Quality/Water Pollution
title Diazotrophic Community Variation Underlies Differences in Nitrogen Fixation Potential in Paddy Soils Across a Climatic Gradient in China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A23%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diazotrophic%20Community%20Variation%20Underlies%20Differences%20in%20Nitrogen%20Fixation%20Potential%20in%20Paddy%20Soils%20Across%20a%20Climatic%20Gradient%20in%20China&rft.jtitle=Microbial%20ecology&rft.au=Wu,%20Chuanfa&rft.date=2021-02-01&rft.volume=81&rft.issue=2&rft.spage=425&rft.epage=436&rft.pages=425-436&rft.issn=0095-3628&rft.eissn=1432-184X&rft_id=info:doi/10.1007/s00248-020-01591-w&rft_dat=%3Cjstor_proqu%3E27291110%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480552308&rft_id=info:pmid/32901387&rft_jstor_id=27291110&rfr_iscdi=true