Adaptive Neighbourhoods for the Discovery of Adversarial Examples

Deep Neural Networks (DNNs) have often supplied state-of-the-art results in pattern recognition tasks. Despite their advances, however, the existence of adversarial examples have caught the attention of the community. Many existing works have proposed methods for searching for adversarial examples w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-01
Hauptverfasser: Morgan, Jay, Paiement, Adeline, Pauly, Arno, Seisenberger, Monika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Morgan, Jay
Paiement, Adeline
Pauly, Arno
Seisenberger, Monika
description Deep Neural Networks (DNNs) have often supplied state-of-the-art results in pattern recognition tasks. Despite their advances, however, the existence of adversarial examples have caught the attention of the community. Many existing works have proposed methods for searching for adversarial examples within fixed-sized regions around training points. Our work complements and improves these existing approaches by adapting the size of these regions based on the problem complexity and data sampling density. This makes such approaches more appropriate for other types of data and may further improve adversarial training methods by increasing the region sizes without creating incorrect labels.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2480551821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480551821</sourcerecordid><originalsourceid>FETCH-proquest_journals_24805518213</originalsourceid><addsrcrecordid>eNqNjMEKgkAURYcgSMp_GGgtjG-ccitltGrVXiZ95oj1bJ5K_X0u-oBW98A53IUIQOs4ShOAlQiZW6UU7PZgjA5EllW2H9yE8oLu3txo9A1RxbImL4cG5dFxSRP6j6RaZtVMbL2znczf9tF3yBuxrG3HGP52Lban_Ho4R72n14g8FO18-pxVAUmqjIlTiPV_1ReU8jme</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480551821</pqid></control><display><type>article</type><title>Adaptive Neighbourhoods for the Discovery of Adversarial Examples</title><source>Free E- Journals</source><creator>Morgan, Jay ; Paiement, Adeline ; Pauly, Arno ; Seisenberger, Monika</creator><creatorcontrib>Morgan, Jay ; Paiement, Adeline ; Pauly, Arno ; Seisenberger, Monika</creatorcontrib><description>Deep Neural Networks (DNNs) have often supplied state-of-the-art results in pattern recognition tasks. Despite their advances, however, the existence of adversarial examples have caught the attention of the community. Many existing works have proposed methods for searching for adversarial examples within fixed-sized regions around training points. Our work complements and improves these existing approaches by adapting the size of these regions based on the problem complexity and data sampling density. This makes such approaches more appropriate for other types of data and may further improve adversarial training methods by increasing the region sizes without creating incorrect labels.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Data sampling ; Pattern recognition ; Training</subject><ispartof>arXiv.org, 2021-01</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Morgan, Jay</creatorcontrib><creatorcontrib>Paiement, Adeline</creatorcontrib><creatorcontrib>Pauly, Arno</creatorcontrib><creatorcontrib>Seisenberger, Monika</creatorcontrib><title>Adaptive Neighbourhoods for the Discovery of Adversarial Examples</title><title>arXiv.org</title><description>Deep Neural Networks (DNNs) have often supplied state-of-the-art results in pattern recognition tasks. Despite their advances, however, the existence of adversarial examples have caught the attention of the community. Many existing works have proposed methods for searching for adversarial examples within fixed-sized regions around training points. Our work complements and improves these existing approaches by adapting the size of these regions based on the problem complexity and data sampling density. This makes such approaches more appropriate for other types of data and may further improve adversarial training methods by increasing the region sizes without creating incorrect labels.</description><subject>Artificial neural networks</subject><subject>Data sampling</subject><subject>Pattern recognition</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMEKgkAURYcgSMp_GGgtjG-ccitltGrVXiZ95oj1bJ5K_X0u-oBW98A53IUIQOs4ShOAlQiZW6UU7PZgjA5EllW2H9yE8oLu3txo9A1RxbImL4cG5dFxSRP6j6RaZtVMbL2znczf9tF3yBuxrG3HGP52Lban_Ho4R72n14g8FO18-pxVAUmqjIlTiPV_1ReU8jme</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>Morgan, Jay</creator><creator>Paiement, Adeline</creator><creator>Pauly, Arno</creator><creator>Seisenberger, Monika</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210122</creationdate><title>Adaptive Neighbourhoods for the Discovery of Adversarial Examples</title><author>Morgan, Jay ; Paiement, Adeline ; Pauly, Arno ; Seisenberger, Monika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24805518213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Data sampling</topic><topic>Pattern recognition</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Morgan, Jay</creatorcontrib><creatorcontrib>Paiement, Adeline</creatorcontrib><creatorcontrib>Pauly, Arno</creatorcontrib><creatorcontrib>Seisenberger, Monika</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morgan, Jay</au><au>Paiement, Adeline</au><au>Pauly, Arno</au><au>Seisenberger, Monika</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive Neighbourhoods for the Discovery of Adversarial Examples</atitle><jtitle>arXiv.org</jtitle><date>2021-01-22</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Deep Neural Networks (DNNs) have often supplied state-of-the-art results in pattern recognition tasks. Despite their advances, however, the existence of adversarial examples have caught the attention of the community. Many existing works have proposed methods for searching for adversarial examples within fixed-sized regions around training points. Our work complements and improves these existing approaches by adapting the size of these regions based on the problem complexity and data sampling density. This makes such approaches more appropriate for other types of data and may further improve adversarial training methods by increasing the region sizes without creating incorrect labels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2480551821
source Free E- Journals
subjects Artificial neural networks
Data sampling
Pattern recognition
Training
title Adaptive Neighbourhoods for the Discovery of Adversarial Examples
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20Neighbourhoods%20for%20the%20Discovery%20of%20Adversarial%20Examples&rft.jtitle=arXiv.org&rft.au=Morgan,%20Jay&rft.date=2021-01-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2480551821%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480551821&rft_id=info:pmid/&rfr_iscdi=true