Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA

To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2021-01, Vol.11 (1), p.015038-015038-10
Hauptverfasser: Peng, Huanghu, Chen, Yu, Wu, Yijie, Lu, Jinying, Zhang, Gangyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 015038-10
container_issue 1
container_start_page 015038
container_title AIP advances
container_volume 11
creator Peng, Huanghu
Chen, Yu
Wu, Yijie
Lu, Jinying
Zhang, Gangyu
description To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this paper. Based on the J–A model and the Gibbs free energy model, a transient multi-field coupling model of GMM is developed by considering the eddy current effect, compression stress variation, and ΔE effect. The simulation results show that the hysteresis loop area increases with increasing driving frequency. The strain of GMM increases first and then decreases with increasing preloading stress. If the stiffness of the deformable bar is too large, the stress of GMM will increase rapidly, thus hindering the elongation of GMM. The simulation process combines the magneto-mechanical coupling model and the dynamic model of embedded GMAs. The simulation results at different excitation frequencies are basically consistent with the experimental data, indicating that the proposed model can predict the output displacement well and provide a theoretical basis for the optimized design of magneto-mechanical coupling for high-performance embedded GMAs.
doi_str_mv 10.1063/5.0027113
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2480437245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d236d69b6f834313bff4b813b7ee170d</doaj_id><sourcerecordid>2480437245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-9c946d0560deb4354b66f4411201d0c2e06c7d7816565fb6423eeca50c8e13fd3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouOge_AcBTwrVfLd7FNFV2EUQPYc0mWiWtqlJu-C_t2tFBcG5vMPw8MzAZNkJwRcES3YpLjCmBSFsL5tRIsqcUSr3f_WH2TylDR6LLwgu-SxTj5BAR_OKQov6qNvkoe1RM9S9z52H2iIThq727QtqgoUaBYeW6zUaWgsRbXX0uqoBdRFSGiIg3yJoKrAW7MhdHWcHTtcJ5l95lD3f3jxd3-Wrh-X99dUqN5yWfb4wCy4tFhJbqDgTvJLScU4IxcRiQwFLU9iiJFJI4SrJKQMwWmBTAmHOsqPsfvLaoDeqi77R8V0F7dXnIMQXpWPvTQ3KUiatXFTSlYwzwirneFWOWQCQAu9cp5Ori-FtgNSrTRhiO56vKC8xZwXlYqTOJsrEkFIE972VYLV7hxLq6x0jez6xyfhe9z603_A2xB9Qddb9B_81fwDaPZZ6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480437245</pqid></control><display><type>article</type><title>Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Peng, Huanghu ; Chen, Yu ; Wu, Yijie ; Lu, Jinying ; Zhang, Gangyu</creator><creatorcontrib>Peng, Huanghu ; Chen, Yu ; Wu, Yijie ; Lu, Jinying ; Zhang, Gangyu</creatorcontrib><description>To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this paper. Based on the J–A model and the Gibbs free energy model, a transient multi-field coupling model of GMM is developed by considering the eddy current effect, compression stress variation, and ΔE effect. The simulation results show that the hysteresis loop area increases with increasing driving frequency. The strain of GMM increases first and then decreases with increasing preloading stress. If the stiffness of the deformable bar is too large, the stress of GMM will increase rapidly, thus hindering the elongation of GMM. The simulation process combines the magneto-mechanical coupling model and the dynamic model of embedded GMAs. The simulation results at different excitation frequencies are basically consistent with the experimental data, indicating that the proposed model can predict the output displacement well and provide a theoretical basis for the optimized design of magneto-mechanical coupling for high-performance embedded GMAs.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0027113</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Coupling ; Design optimization ; Dynamic models ; Eddy currents ; Elongation ; Formability ; Gibbs free energy ; Hysteresis loops ; Magnetostriction ; Precision machining ; Simulation ; Stiffness</subject><ispartof>AIP advances, 2021-01, Vol.11 (1), p.015038-015038-10</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-9c946d0560deb4354b66f4411201d0c2e06c7d7816565fb6423eeca50c8e13fd3</citedby><cites>FETCH-LOGICAL-c428t-9c946d0560deb4354b66f4411201d0c2e06c7d7816565fb6423eeca50c8e13fd3</cites><orcidid>0000-0002-0526-1694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Huanghu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Wu, Yijie</creatorcontrib><creatorcontrib>Lu, Jinying</creatorcontrib><creatorcontrib>Zhang, Gangyu</creatorcontrib><title>Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA</title><title>AIP advances</title><description>To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this paper. Based on the J–A model and the Gibbs free energy model, a transient multi-field coupling model of GMM is developed by considering the eddy current effect, compression stress variation, and ΔE effect. The simulation results show that the hysteresis loop area increases with increasing driving frequency. The strain of GMM increases first and then decreases with increasing preloading stress. If the stiffness of the deformable bar is too large, the stress of GMM will increase rapidly, thus hindering the elongation of GMM. The simulation process combines the magneto-mechanical coupling model and the dynamic model of embedded GMAs. The simulation results at different excitation frequencies are basically consistent with the experimental data, indicating that the proposed model can predict the output displacement well and provide a theoretical basis for the optimized design of magneto-mechanical coupling for high-performance embedded GMAs.</description><subject>Actuators</subject><subject>Coupling</subject><subject>Design optimization</subject><subject>Dynamic models</subject><subject>Eddy currents</subject><subject>Elongation</subject><subject>Formability</subject><subject>Gibbs free energy</subject><subject>Hysteresis loops</subject><subject>Magnetostriction</subject><subject>Precision machining</subject><subject>Simulation</subject><subject>Stiffness</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LxDAQhosouOge_AcBTwrVfLd7FNFV2EUQPYc0mWiWtqlJu-C_t2tFBcG5vMPw8MzAZNkJwRcES3YpLjCmBSFsL5tRIsqcUSr3f_WH2TylDR6LLwgu-SxTj5BAR_OKQov6qNvkoe1RM9S9z52H2iIThq727QtqgoUaBYeW6zUaWgsRbXX0uqoBdRFSGiIg3yJoKrAW7MhdHWcHTtcJ5l95lD3f3jxd3-Wrh-X99dUqN5yWfb4wCy4tFhJbqDgTvJLScU4IxcRiQwFLU9iiJFJI4SrJKQMwWmBTAmHOsqPsfvLaoDeqi77R8V0F7dXnIMQXpWPvTQ3KUiatXFTSlYwzwirneFWOWQCQAu9cp5Ori-FtgNSrTRhiO56vKC8xZwXlYqTOJsrEkFIE972VYLV7hxLq6x0jez6xyfhe9z603_A2xB9Qddb9B_81fwDaPZZ6</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Peng, Huanghu</creator><creator>Chen, Yu</creator><creator>Wu, Yijie</creator><creator>Lu, Jinying</creator><creator>Zhang, Gangyu</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0526-1694</orcidid></search><sort><creationdate>20210101</creationdate><title>Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA</title><author>Peng, Huanghu ; Chen, Yu ; Wu, Yijie ; Lu, Jinying ; Zhang, Gangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-9c946d0560deb4354b66f4411201d0c2e06c7d7816565fb6423eeca50c8e13fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Coupling</topic><topic>Design optimization</topic><topic>Dynamic models</topic><topic>Eddy currents</topic><topic>Elongation</topic><topic>Formability</topic><topic>Gibbs free energy</topic><topic>Hysteresis loops</topic><topic>Magnetostriction</topic><topic>Precision machining</topic><topic>Simulation</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Huanghu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Wu, Yijie</creatorcontrib><creatorcontrib>Lu, Jinying</creatorcontrib><creatorcontrib>Zhang, Gangyu</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Huanghu</au><au>Chen, Yu</au><au>Wu, Yijie</au><au>Lu, Jinying</au><au>Zhang, Gangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA</atitle><jtitle>AIP advances</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>015038</spage><epage>015038-10</epage><pages>015038-015038-10</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this paper. Based on the J–A model and the Gibbs free energy model, a transient multi-field coupling model of GMM is developed by considering the eddy current effect, compression stress variation, and ΔE effect. The simulation results show that the hysteresis loop area increases with increasing driving frequency. The strain of GMM increases first and then decreases with increasing preloading stress. If the stiffness of the deformable bar is too large, the stress of GMM will increase rapidly, thus hindering the elongation of GMM. The simulation process combines the magneto-mechanical coupling model and the dynamic model of embedded GMAs. The simulation results at different excitation frequencies are basically consistent with the experimental data, indicating that the proposed model can predict the output displacement well and provide a theoretical basis for the optimized design of magneto-mechanical coupling for high-performance embedded GMAs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0027113</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0526-1694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2021-01, Vol.11 (1), p.015038-015038-10
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2480437245
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Actuators
Coupling
Design optimization
Dynamic models
Eddy currents
Elongation
Formability
Gibbs free energy
Hysteresis loops
Magnetostriction
Precision machining
Simulation
Stiffness
title Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20transient%20multi-field%20coupling%20model%20of%20GMM%20under%20variable%20pressure%20in%20embedded%20GMA&rft.jtitle=AIP%20advances&rft.au=Peng,%20Huanghu&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=015038&rft.epage=015038-10&rft.pages=015038-015038-10&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0027113&rft_dat=%3Cproquest_doaj_%3E2480437245%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480437245&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d236d69b6f834313bff4b813b7ee170d&rfr_iscdi=true