Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA
To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this pape...
Gespeichert in:
Veröffentlicht in: | AIP advances 2021-01, Vol.11 (1), p.015038-015038-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 015038-10 |
---|---|
container_issue | 1 |
container_start_page | 015038 |
container_title | AIP advances |
container_volume | 11 |
creator | Peng, Huanghu Chen, Yu Wu, Yijie Lu, Jinying Zhang, Gangyu |
description | To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this paper. Based on the J–A model and the Gibbs free energy model, a transient multi-field coupling model of GMM is developed by considering the eddy current effect, compression stress variation, and ΔE effect. The simulation results show that the hysteresis loop area increases with increasing driving frequency. The strain of GMM increases first and then decreases with increasing preloading stress. If the stiffness of the deformable bar is too large, the stress of GMM will increase rapidly, thus hindering the elongation of GMM. The simulation process combines the magneto-mechanical coupling model and the dynamic model of embedded GMAs. The simulation results at different excitation frequencies are basically consistent with the experimental data, indicating that the proposed model can predict the output displacement well and provide a theoretical basis for the optimized design of magneto-mechanical coupling for high-performance embedded GMAs. |
doi_str_mv | 10.1063/5.0027113 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2480437245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d236d69b6f834313bff4b813b7ee170d</doaj_id><sourcerecordid>2480437245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-9c946d0560deb4354b66f4411201d0c2e06c7d7816565fb6423eeca50c8e13fd3</originalsourceid><addsrcrecordid>eNp9kU1LxDAQhosouOge_AcBTwrVfLd7FNFV2EUQPYc0mWiWtqlJu-C_t2tFBcG5vMPw8MzAZNkJwRcES3YpLjCmBSFsL5tRIsqcUSr3f_WH2TylDR6LLwgu-SxTj5BAR_OKQov6qNvkoe1RM9S9z52H2iIThq727QtqgoUaBYeW6zUaWgsRbXX0uqoBdRFSGiIg3yJoKrAW7MhdHWcHTtcJ5l95lD3f3jxd3-Wrh-X99dUqN5yWfb4wCy4tFhJbqDgTvJLScU4IxcRiQwFLU9iiJFJI4SrJKQMwWmBTAmHOsqPsfvLaoDeqi77R8V0F7dXnIMQXpWPvTQ3KUiatXFTSlYwzwirneFWOWQCQAu9cp5Ori-FtgNSrTRhiO56vKC8xZwXlYqTOJsrEkFIE972VYLV7hxLq6x0jez6xyfhe9z603_A2xB9Qddb9B_81fwDaPZZ6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480437245</pqid></control><display><type>article</type><title>Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Peng, Huanghu ; Chen, Yu ; Wu, Yijie ; Lu, Jinying ; Zhang, Gangyu</creator><creatorcontrib>Peng, Huanghu ; Chen, Yu ; Wu, Yijie ; Lu, Jinying ; Zhang, Gangyu</creatorcontrib><description>To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this paper. Based on the J–A model and the Gibbs free energy model, a transient multi-field coupling model of GMM is developed by considering the eddy current effect, compression stress variation, and ΔE effect. The simulation results show that the hysteresis loop area increases with increasing driving frequency. The strain of GMM increases first and then decreases with increasing preloading stress. If the stiffness of the deformable bar is too large, the stress of GMM will increase rapidly, thus hindering the elongation of GMM. The simulation process combines the magneto-mechanical coupling model and the dynamic model of embedded GMAs. The simulation results at different excitation frequencies are basically consistent with the experimental data, indicating that the proposed model can predict the output displacement well and provide a theoretical basis for the optimized design of magneto-mechanical coupling for high-performance embedded GMAs.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0027113</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Actuators ; Coupling ; Design optimization ; Dynamic models ; Eddy currents ; Elongation ; Formability ; Gibbs free energy ; Hysteresis loops ; Magnetostriction ; Precision machining ; Simulation ; Stiffness</subject><ispartof>AIP advances, 2021-01, Vol.11 (1), p.015038-015038-10</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-9c946d0560deb4354b66f4411201d0c2e06c7d7816565fb6423eeca50c8e13fd3</citedby><cites>FETCH-LOGICAL-c428t-9c946d0560deb4354b66f4411201d0c2e06c7d7816565fb6423eeca50c8e13fd3</cites><orcidid>0000-0002-0526-1694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Peng, Huanghu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Wu, Yijie</creatorcontrib><creatorcontrib>Lu, Jinying</creatorcontrib><creatorcontrib>Zhang, Gangyu</creatorcontrib><title>Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA</title><title>AIP advances</title><description>To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this paper. Based on the J–A model and the Gibbs free energy model, a transient multi-field coupling model of GMM is developed by considering the eddy current effect, compression stress variation, and ΔE effect. The simulation results show that the hysteresis loop area increases with increasing driving frequency. The strain of GMM increases first and then decreases with increasing preloading stress. If the stiffness of the deformable bar is too large, the stress of GMM will increase rapidly, thus hindering the elongation of GMM. The simulation process combines the magneto-mechanical coupling model and the dynamic model of embedded GMAs. The simulation results at different excitation frequencies are basically consistent with the experimental data, indicating that the proposed model can predict the output displacement well and provide a theoretical basis for the optimized design of magneto-mechanical coupling for high-performance embedded GMAs.</description><subject>Actuators</subject><subject>Coupling</subject><subject>Design optimization</subject><subject>Dynamic models</subject><subject>Eddy currents</subject><subject>Elongation</subject><subject>Formability</subject><subject>Gibbs free energy</subject><subject>Hysteresis loops</subject><subject>Magnetostriction</subject><subject>Precision machining</subject><subject>Simulation</subject><subject>Stiffness</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LxDAQhosouOge_AcBTwrVfLd7FNFV2EUQPYc0mWiWtqlJu-C_t2tFBcG5vMPw8MzAZNkJwRcES3YpLjCmBSFsL5tRIsqcUSr3f_WH2TylDR6LLwgu-SxTj5BAR_OKQov6qNvkoe1RM9S9z52H2iIThq727QtqgoUaBYeW6zUaWgsRbXX0uqoBdRFSGiIg3yJoKrAW7MhdHWcHTtcJ5l95lD3f3jxd3-Wrh-X99dUqN5yWfb4wCy4tFhJbqDgTvJLScU4IxcRiQwFLU9iiJFJI4SrJKQMwWmBTAmHOsqPsfvLaoDeqi77R8V0F7dXnIMQXpWPvTQ3KUiatXFTSlYwzwirneFWOWQCQAu9cp5Ori-FtgNSrTRhiO56vKC8xZwXlYqTOJsrEkFIE972VYLV7hxLq6x0jez6xyfhe9z603_A2xB9Qddb9B_81fwDaPZZ6</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Peng, Huanghu</creator><creator>Chen, Yu</creator><creator>Wu, Yijie</creator><creator>Lu, Jinying</creator><creator>Zhang, Gangyu</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0526-1694</orcidid></search><sort><creationdate>20210101</creationdate><title>Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA</title><author>Peng, Huanghu ; Chen, Yu ; Wu, Yijie ; Lu, Jinying ; Zhang, Gangyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-9c946d0560deb4354b66f4411201d0c2e06c7d7816565fb6423eeca50c8e13fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Actuators</topic><topic>Coupling</topic><topic>Design optimization</topic><topic>Dynamic models</topic><topic>Eddy currents</topic><topic>Elongation</topic><topic>Formability</topic><topic>Gibbs free energy</topic><topic>Hysteresis loops</topic><topic>Magnetostriction</topic><topic>Precision machining</topic><topic>Simulation</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Huanghu</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Wu, Yijie</creatorcontrib><creatorcontrib>Lu, Jinying</creatorcontrib><creatorcontrib>Zhang, Gangyu</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Huanghu</au><au>Chen, Yu</au><au>Wu, Yijie</au><au>Lu, Jinying</au><au>Zhang, Gangyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA</atitle><jtitle>AIP advances</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>015038</spage><epage>015038-10</epage><pages>015038-015038-10</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>To improve the output performance of embedded giant magnetostrictive actuators (GMAs) for non-circular hole precision machining and to describe the transient nonlinear hysteresis behavior of giant magnetostrictive material (GMM), the magnetostrictive process of GMM is analyzed in detail in this paper. Based on the J–A model and the Gibbs free energy model, a transient multi-field coupling model of GMM is developed by considering the eddy current effect, compression stress variation, and ΔE effect. The simulation results show that the hysteresis loop area increases with increasing driving frequency. The strain of GMM increases first and then decreases with increasing preloading stress. If the stiffness of the deformable bar is too large, the stress of GMM will increase rapidly, thus hindering the elongation of GMM. The simulation process combines the magneto-mechanical coupling model and the dynamic model of embedded GMAs. The simulation results at different excitation frequencies are basically consistent with the experimental data, indicating that the proposed model can predict the output displacement well and provide a theoretical basis for the optimized design of magneto-mechanical coupling for high-performance embedded GMAs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0027113</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0526-1694</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2021-01, Vol.11 (1), p.015038-015038-10 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2480437245 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Actuators Coupling Design optimization Dynamic models Eddy currents Elongation Formability Gibbs free energy Hysteresis loops Magnetostriction Precision machining Simulation Stiffness |
title | Research on transient multi-field coupling model of GMM under variable pressure in embedded GMA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20transient%20multi-field%20coupling%20model%20of%20GMM%20under%20variable%20pressure%20in%20embedded%20GMA&rft.jtitle=AIP%20advances&rft.au=Peng,%20Huanghu&rft.date=2021-01-01&rft.volume=11&rft.issue=1&rft.spage=015038&rft.epage=015038-10&rft.pages=015038-015038-10&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0027113&rft_dat=%3Cproquest_doaj_%3E2480437245%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480437245&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d236d69b6f834313bff4b813b7ee170d&rfr_iscdi=true |