Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method
This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s −1 and...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2021, Vol.127 (1), Article 27 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 127 |
creator | Ostropiko, Eugeny Krivosheev, Sergey Magazinov, Sergey |
description | This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s
−1
and in local areas, they reach 10,000–12,000 s
−1
. The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate. |
doi_str_mv | 10.1007/s00339-020-04160-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480341866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480341866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-86b9193007efec7f384db0150f061a3df63d33d8d06ba0ce2ce5f2f930ac6b273</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGduokS1TxJ1WwaSV2lhPbjas0KbaD6G04CyfDJUjsmM1opPfezHwIXVK4pgD5TQDgvCTAgEBGBZD8CE1oxhkBweEYTaDMclLwUpyisxA2kCpjbIJeV51TH061uHHrBofoleuwV9HgaLrg-g73Fiu8dM8Oq7bt93jn-3enjcbV_uszNgZv1boz0dV4N7QhjSY2vT5HJ1al8eK3T9Hq_m45fySLl4en-e2C1JyWkRSiKmnJ0w_Gmjq3vMh0BXQGFgRVXFvBNee60CAqBbVhtZlZZpND1aJiOZ-iqzE3nfU2mBDlph98l1ZKlhXAM1oIkVRsVNW-D8EbK3febZXfSwryQFCOBGUiKH8IykM0H00hibu18X_R_7i-Ab1bdHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480341866</pqid></control><display><type>article</type><title>Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method</title><source>SpringerNature Journals</source><creator>Ostropiko, Eugeny ; Krivosheev, Sergey ; Magazinov, Sergey</creator><creatorcontrib>Ostropiko, Eugeny ; Krivosheev, Sergey ; Magazinov, Sergey</creatorcontrib><description>This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s
−1
and in local areas, they reach 10,000–12,000 s
−1
. The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-04160-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alloying elements ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; High strain rate ; Intermetallic compounds ; Machines ; Magnetic properties ; Manufacturing ; Martensite ; Martensitic transformations ; Materials science ; Nanotechnology ; Nickel base alloys ; Nickel compounds ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Shape effects ; Shape memory alloys ; Surfaces and Interfaces ; Thin Films ; Titanium compounds</subject><ispartof>Applied physics. A, Materials science & processing, 2021, Vol.127 (1), Article 27</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-86b9193007efec7f384db0150f061a3df63d33d8d06ba0ce2ce5f2f930ac6b273</citedby><cites>FETCH-LOGICAL-c319t-86b9193007efec7f384db0150f061a3df63d33d8d06ba0ce2ce5f2f930ac6b273</cites><orcidid>0000-0002-0130-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-020-04160-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-020-04160-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ostropiko, Eugeny</creatorcontrib><creatorcontrib>Krivosheev, Sergey</creatorcontrib><creatorcontrib>Magazinov, Sergey</creatorcontrib><title>Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s
−1
and in local areas, they reach 10,000–12,000 s
−1
. The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate.</description><subject>Alloying elements</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>High strain rate</subject><subject>Intermetallic compounds</subject><subject>Machines</subject><subject>Magnetic properties</subject><subject>Manufacturing</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium compounds</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGduokS1TxJ1WwaSV2lhPbjas0KbaD6G04CyfDJUjsmM1opPfezHwIXVK4pgD5TQDgvCTAgEBGBZD8CE1oxhkBweEYTaDMclLwUpyisxA2kCpjbIJeV51TH061uHHrBofoleuwV9HgaLrg-g73Fiu8dM8Oq7bt93jn-3enjcbV_uszNgZv1boz0dV4N7QhjSY2vT5HJ1al8eK3T9Hq_m45fySLl4en-e2C1JyWkRSiKmnJ0w_Gmjq3vMh0BXQGFgRVXFvBNee60CAqBbVhtZlZZpND1aJiOZ-iqzE3nfU2mBDlph98l1ZKlhXAM1oIkVRsVNW-D8EbK3febZXfSwryQFCOBGUiKH8IykM0H00hibu18X_R_7i-Ab1bdHA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ostropiko, Eugeny</creator><creator>Krivosheev, Sergey</creator><creator>Magazinov, Sergey</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0130-5987</orcidid></search><sort><creationdate>2021</creationdate><title>Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method</title><author>Ostropiko, Eugeny ; Krivosheev, Sergey ; Magazinov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-86b9193007efec7f384db0150f061a3df63d33d8d06ba0ce2ce5f2f930ac6b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying elements</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>High strain rate</topic><topic>Intermetallic compounds</topic><topic>Machines</topic><topic>Magnetic properties</topic><topic>Manufacturing</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostropiko, Eugeny</creatorcontrib><creatorcontrib>Krivosheev, Sergey</creatorcontrib><creatorcontrib>Magazinov, Sergey</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostropiko, Eugeny</au><au>Krivosheev, Sergey</au><au>Magazinov, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021</date><risdate>2021</risdate><volume>127</volume><issue>1</issue><artnum>27</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s
−1
and in local areas, they reach 10,000–12,000 s
−1
. The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-04160-7</doi><orcidid>https://orcid.org/0000-0002-0130-5987</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2021, Vol.127 (1), Article 27 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2480341866 |
source | SpringerNature Journals |
subjects | Alloying elements Applied physics Characterization and Evaluation of Materials Condensed Matter Physics High strain rate Intermetallic compounds Machines Magnetic properties Manufacturing Martensite Martensitic transformations Materials science Nanotechnology Nickel base alloys Nickel compounds Optical and Electronic Materials Physics Physics and Astronomy Processes Shape effects Shape memory alloys Surfaces and Interfaces Thin Films Titanium compounds |
title | Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniaxial%20high%20strain%20rate%20tension%20of%20a%20TiNi%20alloy%20provided%20by%C2%A0the%20magnetic%20pulse%20method&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Ostropiko,%20Eugeny&rft.date=2021&rft.volume=127&rft.issue=1&rft.artnum=27&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-04160-7&rft_dat=%3Cproquest_cross%3E2480341866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480341866&rft_id=info:pmid/&rfr_iscdi=true |