Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method

This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s −1 and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2021, Vol.127 (1), Article 27
Hauptverfasser: Ostropiko, Eugeny, Krivosheev, Sergey, Magazinov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 127
creator Ostropiko, Eugeny
Krivosheev, Sergey
Magazinov, Sergey
description This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s −1 and in local areas, they reach 10,000–12,000 s −1 . The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate.
doi_str_mv 10.1007/s00339-020-04160-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480341866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480341866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-86b9193007efec7f384db0150f061a3df63d33d8d06ba0ce2ce5f2f930ac6b273</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGduokS1TxJ1WwaSV2lhPbjas0KbaD6G04CyfDJUjsmM1opPfezHwIXVK4pgD5TQDgvCTAgEBGBZD8CE1oxhkBweEYTaDMclLwUpyisxA2kCpjbIJeV51TH061uHHrBofoleuwV9HgaLrg-g73Fiu8dM8Oq7bt93jn-3enjcbV_uszNgZv1boz0dV4N7QhjSY2vT5HJ1al8eK3T9Hq_m45fySLl4en-e2C1JyWkRSiKmnJ0w_Gmjq3vMh0BXQGFgRVXFvBNee60CAqBbVhtZlZZpND1aJiOZ-iqzE3nfU2mBDlph98l1ZKlhXAM1oIkVRsVNW-D8EbK3febZXfSwryQFCOBGUiKH8IykM0H00hibu18X_R_7i-Ab1bdHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480341866</pqid></control><display><type>article</type><title>Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method</title><source>SpringerNature Journals</source><creator>Ostropiko, Eugeny ; Krivosheev, Sergey ; Magazinov, Sergey</creator><creatorcontrib>Ostropiko, Eugeny ; Krivosheev, Sergey ; Magazinov, Sergey</creatorcontrib><description>This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s −1 and in local areas, they reach 10,000–12,000 s −1 . The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-020-04160-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Alloying elements ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; High strain rate ; Intermetallic compounds ; Machines ; Magnetic properties ; Manufacturing ; Martensite ; Martensitic transformations ; Materials science ; Nanotechnology ; Nickel base alloys ; Nickel compounds ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Shape effects ; Shape memory alloys ; Surfaces and Interfaces ; Thin Films ; Titanium compounds</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2021, Vol.127 (1), Article 27</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-86b9193007efec7f384db0150f061a3df63d33d8d06ba0ce2ce5f2f930ac6b273</citedby><cites>FETCH-LOGICAL-c319t-86b9193007efec7f384db0150f061a3df63d33d8d06ba0ce2ce5f2f930ac6b273</cites><orcidid>0000-0002-0130-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-020-04160-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-020-04160-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ostropiko, Eugeny</creatorcontrib><creatorcontrib>Krivosheev, Sergey</creatorcontrib><creatorcontrib>Magazinov, Sergey</creatorcontrib><title>Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s −1 and in local areas, they reach 10,000–12,000 s −1 . The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate.</description><subject>Alloying elements</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>High strain rate</subject><subject>Intermetallic compounds</subject><subject>Machines</subject><subject>Magnetic properties</subject><subject>Manufacturing</subject><subject>Martensite</subject><subject>Martensitic transformations</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Nickel base alloys</subject><subject>Nickel compounds</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium compounds</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAVaWWBvGduokS1TxJ1WwaSV2lhPbjas0KbaD6G04CyfDJUjsmM1opPfezHwIXVK4pgD5TQDgvCTAgEBGBZD8CE1oxhkBweEYTaDMclLwUpyisxA2kCpjbIJeV51TH061uHHrBofoleuwV9HgaLrg-g73Fiu8dM8Oq7bt93jn-3enjcbV_uszNgZv1boz0dV4N7QhjSY2vT5HJ1al8eK3T9Hq_m45fySLl4en-e2C1JyWkRSiKmnJ0w_Gmjq3vMh0BXQGFgRVXFvBNee60CAqBbVhtZlZZpND1aJiOZ-iqzE3nfU2mBDlph98l1ZKlhXAM1oIkVRsVNW-D8EbK3febZXfSwryQFCOBGUiKH8IykM0H00hibu18X_R_7i-Ab1bdHA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ostropiko, Eugeny</creator><creator>Krivosheev, Sergey</creator><creator>Magazinov, Sergey</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0130-5987</orcidid></search><sort><creationdate>2021</creationdate><title>Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method</title><author>Ostropiko, Eugeny ; Krivosheev, Sergey ; Magazinov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-86b9193007efec7f384db0150f061a3df63d33d8d06ba0ce2ce5f2f930ac6b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying elements</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>High strain rate</topic><topic>Intermetallic compounds</topic><topic>Machines</topic><topic>Magnetic properties</topic><topic>Manufacturing</topic><topic>Martensite</topic><topic>Martensitic transformations</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Nickel base alloys</topic><topic>Nickel compounds</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostropiko, Eugeny</creatorcontrib><creatorcontrib>Krivosheev, Sergey</creatorcontrib><creatorcontrib>Magazinov, Sergey</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostropiko, Eugeny</au><au>Krivosheev, Sergey</au><au>Magazinov, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021</date><risdate>2021</risdate><volume>127</volume><issue>1</issue><artnum>27</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>This study makes use of the magnetic pulse method for providing the uniaxial tension of TiNi shape memory alloy specimens. Finite element simulations demonstrate good agreement between the evaluated residual strains and experimental values. The evaluated average strain rates are ~ 4000–5000 s −1 and in local areas, they reach 10,000–12,000 s −1 . The functional properties of the alloy after magnetic pulse tension are shown and compared with the results after quasistatic tension. The values of the shape memory effect after magnetic pulse tension decrease by 15–20%. Magnetic field simulation shows that induced currents are negligible and do not lead to heating in the working part of the specimens. It is concluded that the reason for the decrease in the shape memory effect is the high pre-strain rate. Reorientation processes must be sensitive to the strain rate, so the proportion of the oriented martensite decreases with increasing strain rate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-020-04160-7</doi><orcidid>https://orcid.org/0000-0002-0130-5987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2021, Vol.127 (1), Article 27
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2480341866
source SpringerNature Journals
subjects Alloying elements
Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
High strain rate
Intermetallic compounds
Machines
Magnetic properties
Manufacturing
Martensite
Martensitic transformations
Materials science
Nanotechnology
Nickel base alloys
Nickel compounds
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Shape effects
Shape memory alloys
Surfaces and Interfaces
Thin Films
Titanium compounds
title Uniaxial high strain rate tension of a TiNi alloy provided by the magnetic pulse method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniaxial%20high%20strain%20rate%20tension%20of%20a%20TiNi%20alloy%20provided%20by%C2%A0the%20magnetic%20pulse%20method&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Ostropiko,%20Eugeny&rft.date=2021&rft.volume=127&rft.issue=1&rft.artnum=27&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-020-04160-7&rft_dat=%3Cproquest_cross%3E2480341866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480341866&rft_id=info:pmid/&rfr_iscdi=true