Derivation of Multicomponent Lattice Boltzmann Equations by Introducing a Nonequilibrium Distribution Function into the Maxwell Iteration Based on the Convective Scaling

This study firstly proposes a simple recursive method for deriving the macroscale equations from lattice Boltzmann equations. Similar to the Maxwell iteration based on the convective scaling, this method is used to expand the lattice Boltzmann (LB) equations with the time step δ t . It is characteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2021, Vol.182 (1), Article 4
Hauptverfasser: Yamamoto, Keiichi, Seta, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of statistical physics
container_volume 182
creator Yamamoto, Keiichi
Seta, Takeshi
description This study firstly proposes a simple recursive method for deriving the macroscale equations from lattice Boltzmann equations. Similar to the Maxwell iteration based on the convective scaling, this method is used to expand the lattice Boltzmann (LB) equations with the time step δ t . It is characterised by the incorporation of a nonequilibrium distribution function not appearing in the Maxwell iteration to considerably reduce the mathematical manipulations required. Next, we define the kinetic equations of a multicomponent (i.e. N-component) system based on a model using the Maxwell velocity distribution law for the equilibrium distribution function appearing in the cross-collision terms. Then, using this simple recursive method, we derive the generalized Stefan–Maxwell equation, which is the macroscale governing equation of a multicomponent system while ensuring the mass conservation. In short, our objective is to firstly define the kinetic equations of a multi-component system having a clear physical interpretation and then formulate the LB equations of any N-component system deductively.
doi_str_mv 10.1007/s10955-020-02686-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2480330647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A650609612</galeid><sourcerecordid>A650609612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-dbff9436a48d37cdcc82eea7f2afe0c04db3904f460343ba4938ecc77efb73d33</originalsourceid><addsrcrecordid>eNp9kdGO1CAUhonRxHH1Bbwi8brraaGlvdyd3dVJZvVCvSaUHkY2LcwAnZ31jXxL2amJd4YQDvB_5yf8hLwv4bIEEB9jCV1dF1BBnk3bFKcXZFXWoiq6pmQvyQqgqgouyvo1eRPjAwB0bVevyO8bDPaokvWOekPv5zFZ7ae9d-gS3aqUt0iv_Zh-Tco5enuYz-JI-ye6cSn4YdbW7aiiXzJzmO1o-2Dnid7YmILt53Pru9npc2Fd8jT9RHqvTo84jnSTMCz21yriQHPxfL327ogZOSL9ptWYHd6SV0aNEd_9XS_Ij7vb7-vPxfbrp836altoVrepGHpjOs4axduBCT1o3VaISphKGQQNfOhZB9zwBhhnveIda1FrIdD0gg2MXZAPS9998IcZY5IPfg4uW8qKt8AYNFxk1eWi2qkRpXXGp6B0HgNO-QMdGpvPr5oaGsgRVBmoFkAHH2NAI_fBTio8yRLkc4ZyyVDmDOU5Q3nKEFugmMVuh-HfW_5D_QE9yqS_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480330647</pqid></control><display><type>article</type><title>Derivation of Multicomponent Lattice Boltzmann Equations by Introducing a Nonequilibrium Distribution Function into the Maxwell Iteration Based on the Convective Scaling</title><source>SpringerLink Journals</source><creator>Yamamoto, Keiichi ; Seta, Takeshi</creator><creatorcontrib>Yamamoto, Keiichi ; Seta, Takeshi</creatorcontrib><description>This study firstly proposes a simple recursive method for deriving the macroscale equations from lattice Boltzmann equations. Similar to the Maxwell iteration based on the convective scaling, this method is used to expand the lattice Boltzmann (LB) equations with the time step δ t . It is characterised by the incorporation of a nonequilibrium distribution function not appearing in the Maxwell iteration to considerably reduce the mathematical manipulations required. Next, we define the kinetic equations of a multicomponent (i.e. N-component) system based on a model using the Maxwell velocity distribution law for the equilibrium distribution function appearing in the cross-collision terms. Then, using this simple recursive method, we derive the generalized Stefan–Maxwell equation, which is the macroscale governing equation of a multicomponent system while ensuring the mass conservation. In short, our objective is to firstly define the kinetic equations of a multi-component system having a clear physical interpretation and then formulate the LB equations of any N-component system deductively.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-020-02686-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Distribution (Probability theory) ; Distribution functions ; Iterative methods ; Kinetic equations ; Mathematical and Computational Physics ; Maxwell's equations ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Recursive methods ; Statistical Physics and Dynamical Systems ; Theoretical ; Velocity distribution</subject><ispartof>Journal of statistical physics, 2021, Vol.182 (1), Article 4</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-dbff9436a48d37cdcc82eea7f2afe0c04db3904f460343ba4938ecc77efb73d33</citedby><cites>FETCH-LOGICAL-c358t-dbff9436a48d37cdcc82eea7f2afe0c04db3904f460343ba4938ecc77efb73d33</cites><orcidid>0000-0003-2179-3751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-020-02686-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-020-02686-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yamamoto, Keiichi</creatorcontrib><creatorcontrib>Seta, Takeshi</creatorcontrib><title>Derivation of Multicomponent Lattice Boltzmann Equations by Introducing a Nonequilibrium Distribution Function into the Maxwell Iteration Based on the Convective Scaling</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>This study firstly proposes a simple recursive method for deriving the macroscale equations from lattice Boltzmann equations. Similar to the Maxwell iteration based on the convective scaling, this method is used to expand the lattice Boltzmann (LB) equations with the time step δ t . It is characterised by the incorporation of a nonequilibrium distribution function not appearing in the Maxwell iteration to considerably reduce the mathematical manipulations required. Next, we define the kinetic equations of a multicomponent (i.e. N-component) system based on a model using the Maxwell velocity distribution law for the equilibrium distribution function appearing in the cross-collision terms. Then, using this simple recursive method, we derive the generalized Stefan–Maxwell equation, which is the macroscale governing equation of a multicomponent system while ensuring the mass conservation. In short, our objective is to firstly define the kinetic equations of a multi-component system having a clear physical interpretation and then formulate the LB equations of any N-component system deductively.</description><subject>Analysis</subject><subject>Distribution (Probability theory)</subject><subject>Distribution functions</subject><subject>Iterative methods</subject><subject>Kinetic equations</subject><subject>Mathematical and Computational Physics</subject><subject>Maxwell's equations</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Recursive methods</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><subject>Velocity distribution</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kdGO1CAUhonRxHH1Bbwi8brraaGlvdyd3dVJZvVCvSaUHkY2LcwAnZ31jXxL2amJd4YQDvB_5yf8hLwv4bIEEB9jCV1dF1BBnk3bFKcXZFXWoiq6pmQvyQqgqgouyvo1eRPjAwB0bVevyO8bDPaokvWOekPv5zFZ7ae9d-gS3aqUt0iv_Zh-Tco5enuYz-JI-ye6cSn4YdbW7aiiXzJzmO1o-2Dnid7YmILt53Pru9npc2Fd8jT9RHqvTo84jnSTMCz21yriQHPxfL327ogZOSL9ptWYHd6SV0aNEd_9XS_Ij7vb7-vPxfbrp836altoVrepGHpjOs4axduBCT1o3VaISphKGQQNfOhZB9zwBhhnveIda1FrIdD0gg2MXZAPS9998IcZY5IPfg4uW8qKt8AYNFxk1eWi2qkRpXXGp6B0HgNO-QMdGpvPr5oaGsgRVBmoFkAHH2NAI_fBTio8yRLkc4ZyyVDmDOU5Q3nKEFugmMVuh-HfW_5D_QE9yqS_</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yamamoto, Keiichi</creator><creator>Seta, Takeshi</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2179-3751</orcidid></search><sort><creationdate>2021</creationdate><title>Derivation of Multicomponent Lattice Boltzmann Equations by Introducing a Nonequilibrium Distribution Function into the Maxwell Iteration Based on the Convective Scaling</title><author>Yamamoto, Keiichi ; Seta, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-dbff9436a48d37cdcc82eea7f2afe0c04db3904f460343ba4938ecc77efb73d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Distribution (Probability theory)</topic><topic>Distribution functions</topic><topic>Iterative methods</topic><topic>Kinetic equations</topic><topic>Mathematical and Computational Physics</topic><topic>Maxwell's equations</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Recursive methods</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Keiichi</creatorcontrib><creatorcontrib>Seta, Takeshi</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Keiichi</au><au>Seta, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of Multicomponent Lattice Boltzmann Equations by Introducing a Nonequilibrium Distribution Function into the Maxwell Iteration Based on the Convective Scaling</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2021</date><risdate>2021</risdate><volume>182</volume><issue>1</issue><artnum>4</artnum><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>This study firstly proposes a simple recursive method for deriving the macroscale equations from lattice Boltzmann equations. Similar to the Maxwell iteration based on the convective scaling, this method is used to expand the lattice Boltzmann (LB) equations with the time step δ t . It is characterised by the incorporation of a nonequilibrium distribution function not appearing in the Maxwell iteration to considerably reduce the mathematical manipulations required. Next, we define the kinetic equations of a multicomponent (i.e. N-component) system based on a model using the Maxwell velocity distribution law for the equilibrium distribution function appearing in the cross-collision terms. Then, using this simple recursive method, we derive the generalized Stefan–Maxwell equation, which is the macroscale governing equation of a multicomponent system while ensuring the mass conservation. In short, our objective is to firstly define the kinetic equations of a multi-component system having a clear physical interpretation and then formulate the LB equations of any N-component system deductively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-020-02686-x</doi><orcidid>https://orcid.org/0000-0003-2179-3751</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2021, Vol.182 (1), Article 4
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_2480330647
source SpringerLink Journals
subjects Analysis
Distribution (Probability theory)
Distribution functions
Iterative methods
Kinetic equations
Mathematical and Computational Physics
Maxwell's equations
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Recursive methods
Statistical Physics and Dynamical Systems
Theoretical
Velocity distribution
title Derivation of Multicomponent Lattice Boltzmann Equations by Introducing a Nonequilibrium Distribution Function into the Maxwell Iteration Based on the Convective Scaling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20Multicomponent%20Lattice%20Boltzmann%20Equations%20by%20Introducing%20a%20Nonequilibrium%20Distribution%20Function%20into%20the%20Maxwell%20Iteration%20Based%20on%20the%20Convective%20Scaling&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Yamamoto,%20Keiichi&rft.date=2021&rft.volume=182&rft.issue=1&rft.artnum=4&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-020-02686-x&rft_dat=%3Cgale_proqu%3EA650609612%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480330647&rft_id=info:pmid/&rft_galeid=A650609612&rfr_iscdi=true