The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms

In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020, p.1-10, Article 8836000
Hauptverfasser: Hsu, Jyh-Yih, Tseng, Wei-Kuo, Hsieh, Jia-You, Chang, Chao-Jen, Chen, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Hsu, Jyh-Yih
Tseng, Wei-Kuo
Hsieh, Jia-You
Chang, Chao-Jen
Chen, Huan
description In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine the degree of preference for website solutions, which required a large number of tests for evaluation, and could not respond to environmental variables that made it difficult to predict the actual recommendation in advance. Therefore, in this study, the reinforcement learning model combined with different contextual Multiarmed Bandit algorithms can be tested in data sets of different complexity, which can actually perform well in changing products. It is helpful to predict the preferences of the promotion model.
doi_str_mv 10.1155/2020/8836000
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2480125593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480125593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-35652f6eaacb51f1e3c49386ea43d9a3984d427eb6b7e66caaf36715a0b103523</originalsourceid><addsrcrecordid>eNqNkM1q3DAUhU1pIGnSXR5A0GXj5kqyZHs5MekPTEjID3RnZPl6RsGWEklm2tfIE1dmQrsLXeney3fOESfLTil8oVSIcwYMzquKSwB4lx1RIXkuaFG-TzOwIqeM_zzMPoTwCMCooNVR9nK_RXKL2k0T2t7YDVltvNHzGGevRnLjXT_rSO7UiGHZJheNs-TK9UiMJZd5syi9RvIQFvUtGju4tCe7SNaovF3OOxO3pHE24q84J9-rFGCUn7AnFyrlRrIaN84nagon2cGgxoAfX9_j7OHr5X3zPV9ff_vRrNa55hXEnAsp2CBRKd0JOlDkuqh5lQ4F72vF66roC1ZiJ7sSpdRKDVyWVCjoKHDB-HH2ae_75N3zjCG2j272NkW2rKiAMiFqnqizPaW9C8Hj0D55Myn_u6XQLq23S-vta-sJ_7zHd9i5IWiDVuNfSSIk5QBlnSagia7-n25MVEv5jZtt_Be0NbZXO_P2t_4AXSGkIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480125593</pqid></control><display><type>article</type><title>The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Hsu, Jyh-Yih ; Tseng, Wei-Kuo ; Hsieh, Jia-You ; Chang, Chao-Jen ; Chen, Huan</creator><contributor>Hung, Jason C. ; Jason C Hung</contributor><creatorcontrib>Hsu, Jyh-Yih ; Tseng, Wei-Kuo ; Hsieh, Jia-You ; Chang, Chao-Jen ; Chen, Huan ; Hung, Jason C. ; Jason C Hung</creatorcontrib><description>In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine the degree of preference for website solutions, which required a large number of tests for evaluation, and could not respond to environmental variables that made it difficult to predict the actual recommendation in advance. Therefore, in this study, the reinforcement learning model combined with different contextual Multiarmed Bandit algorithms can be tested in data sets of different complexity, which can actually perform well in changing products. It is helpful to predict the preferences of the promotion model.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/8836000</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Algorithms ; Consumers ; Datasets ; Electronic commerce ; Engineering ; Engineering, Multidisciplinary ; Expected values ; Feedback ; Machine learning ; Mathematical problems ; Mathematics ; Mathematics, Interdisciplinary Applications ; Multi-armed bandit problems ; Physical Sciences ; Sales ; Science &amp; Technology ; Technology ; Websites</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020, p.1-10, Article 8836000</ispartof><rights>Copyright © 2020 Jyh-Yih Hsu et al.</rights><rights>Copyright © 2020 Jyh-Yih Hsu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000613007900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c380t-35652f6eaacb51f1e3c49386ea43d9a3984d427eb6b7e66caaf36715a0b103523</citedby><cites>FETCH-LOGICAL-c380t-35652f6eaacb51f1e3c49386ea43d9a3984d427eb6b7e66caaf36715a0b103523</cites><orcidid>0000-0003-0410-3843 ; 0000-0002-8964-9855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27927,27928,27929</link.rule.ids></links><search><contributor>Hung, Jason C.</contributor><contributor>Jason C Hung</contributor><creatorcontrib>Hsu, Jyh-Yih</creatorcontrib><creatorcontrib>Tseng, Wei-Kuo</creatorcontrib><creatorcontrib>Hsieh, Jia-You</creatorcontrib><creatorcontrib>Chang, Chao-Jen</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><title>The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms</title><title>Mathematical problems in engineering</title><addtitle>MATH PROBL ENG</addtitle><description>In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine the degree of preference for website solutions, which required a large number of tests for evaluation, and could not respond to environmental variables that made it difficult to predict the actual recommendation in advance. Therefore, in this study, the reinforcement learning model combined with different contextual Multiarmed Bandit algorithms can be tested in data sets of different complexity, which can actually perform well in changing products. It is helpful to predict the preferences of the promotion model.</description><subject>Algorithms</subject><subject>Consumers</subject><subject>Datasets</subject><subject>Electronic commerce</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Expected values</subject><subject>Feedback</subject><subject>Machine learning</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Multi-armed bandit problems</subject><subject>Physical Sciences</subject><subject>Sales</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Websites</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkM1q3DAUhU1pIGnSXR5A0GXj5kqyZHs5MekPTEjID3RnZPl6RsGWEklm2tfIE1dmQrsLXeney3fOESfLTil8oVSIcwYMzquKSwB4lx1RIXkuaFG-TzOwIqeM_zzMPoTwCMCooNVR9nK_RXKL2k0T2t7YDVltvNHzGGevRnLjXT_rSO7UiGHZJheNs-TK9UiMJZd5syi9RvIQFvUtGju4tCe7SNaovF3OOxO3pHE24q84J9-rFGCUn7AnFyrlRrIaN84nagon2cGgxoAfX9_j7OHr5X3zPV9ff_vRrNa55hXEnAsp2CBRKd0JOlDkuqh5lQ4F72vF66roC1ZiJ7sSpdRKDVyWVCjoKHDB-HH2ae_75N3zjCG2j272NkW2rKiAMiFqnqizPaW9C8Hj0D55Myn_u6XQLq23S-vta-sJ_7zHd9i5IWiDVuNfSSIk5QBlnSagia7-n25MVEv5jZtt_Be0NbZXO_P2t_4AXSGkIw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Hsu, Jyh-Yih</creator><creator>Tseng, Wei-Kuo</creator><creator>Hsieh, Jia-You</creator><creator>Chang, Chao-Jen</creator><creator>Chen, Huan</creator><general>Hindawi</general><general>Hindawi Publishing Group</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0410-3843</orcidid><orcidid>https://orcid.org/0000-0002-8964-9855</orcidid></search><sort><creationdate>2020</creationdate><title>The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms</title><author>Hsu, Jyh-Yih ; Tseng, Wei-Kuo ; Hsieh, Jia-You ; Chang, Chao-Jen ; Chen, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-35652f6eaacb51f1e3c49386ea43d9a3984d427eb6b7e66caaf36715a0b103523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Consumers</topic><topic>Datasets</topic><topic>Electronic commerce</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Expected values</topic><topic>Feedback</topic><topic>Machine learning</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Multi-armed bandit problems</topic><topic>Physical Sciences</topic><topic>Sales</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Jyh-Yih</creatorcontrib><creatorcontrib>Tseng, Wei-Kuo</creatorcontrib><creatorcontrib>Hsieh, Jia-You</creatorcontrib><creatorcontrib>Chang, Chao-Jen</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Jyh-Yih</au><au>Tseng, Wei-Kuo</au><au>Hsieh, Jia-You</au><au>Chang, Chao-Jen</au><au>Chen, Huan</au><au>Hung, Jason C.</au><au>Jason C Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms</atitle><jtitle>Mathematical problems in engineering</jtitle><stitle>MATH PROBL ENG</stitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>8836000</artnum><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine the degree of preference for website solutions, which required a large number of tests for evaluation, and could not respond to environmental variables that made it difficult to predict the actual recommendation in advance. Therefore, in this study, the reinforcement learning model combined with different contextual Multiarmed Bandit algorithms can be tested in data sets of different complexity, which can actually perform well in changing products. It is helpful to predict the preferences of the promotion model.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2020/8836000</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0410-3843</orcidid><orcidid>https://orcid.org/0000-0002-8964-9855</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020, p.1-10, Article 8836000
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2480125593
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algorithms
Consumers
Datasets
Electronic commerce
Engineering
Engineering, Multidisciplinary
Expected values
Feedback
Machine learning
Mathematical problems
Mathematics
Mathematics, Interdisciplinary Applications
Multi-armed bandit problems
Physical Sciences
Sales
Science & Technology
Technology
Websites
title The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Recommending%20Agricultural%20Product%20Sales%20Promotion%20Mode%20in%20E-Commerce%20Using%20Reinforcement%20Learning%20with%20Contextual%20Multiarmed%20Bandit%20Algorithms&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Hsu,%20Jyh-Yih&rft.date=2020&rft.volume=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=8836000&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/8836000&rft_dat=%3Cproquest_webof%3E2480125593%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480125593&rft_id=info:pmid/&rfr_iscdi=true