The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms
In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine th...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020, p.1-10, Article 8836000 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Hsu, Jyh-Yih Tseng, Wei-Kuo Hsieh, Jia-You Chang, Chao-Jen Chen, Huan |
description | In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine the degree of preference for website solutions, which required a large number of tests for evaluation, and could not respond to environmental variables that made it difficult to predict the actual recommendation in advance. Therefore, in this study, the reinforcement learning model combined with different contextual Multiarmed Bandit algorithms can be tested in data sets of different complexity, which can actually perform well in changing products. It is helpful to predict the preferences of the promotion model. |
doi_str_mv | 10.1155/2020/8836000 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2480125593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480125593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-35652f6eaacb51f1e3c49386ea43d9a3984d427eb6b7e66caaf36715a0b103523</originalsourceid><addsrcrecordid>eNqNkM1q3DAUhU1pIGnSXR5A0GXj5kqyZHs5MekPTEjID3RnZPl6RsGWEklm2tfIE1dmQrsLXeney3fOESfLTil8oVSIcwYMzquKSwB4lx1RIXkuaFG-TzOwIqeM_zzMPoTwCMCooNVR9nK_RXKL2k0T2t7YDVltvNHzGGevRnLjXT_rSO7UiGHZJheNs-TK9UiMJZd5syi9RvIQFvUtGju4tCe7SNaovF3OOxO3pHE24q84J9-rFGCUn7AnFyrlRrIaN84nagon2cGgxoAfX9_j7OHr5X3zPV9ff_vRrNa55hXEnAsp2CBRKd0JOlDkuqh5lQ4F72vF66roC1ZiJ7sSpdRKDVyWVCjoKHDB-HH2ae_75N3zjCG2j272NkW2rKiAMiFqnqizPaW9C8Hj0D55Myn_u6XQLq23S-vta-sJ_7zHd9i5IWiDVuNfSSIk5QBlnSagia7-n25MVEv5jZtt_Be0NbZXO_P2t_4AXSGkIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480125593</pqid></control><display><type>article</type><title>The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Hsu, Jyh-Yih ; Tseng, Wei-Kuo ; Hsieh, Jia-You ; Chang, Chao-Jen ; Chen, Huan</creator><contributor>Hung, Jason C. ; Jason C Hung</contributor><creatorcontrib>Hsu, Jyh-Yih ; Tseng, Wei-Kuo ; Hsieh, Jia-You ; Chang, Chao-Jen ; Chen, Huan ; Hung, Jason C. ; Jason C Hung</creatorcontrib><description>In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine the degree of preference for website solutions, which required a large number of tests for evaluation, and could not respond to environmental variables that made it difficult to predict the actual recommendation in advance. Therefore, in this study, the reinforcement learning model combined with different contextual Multiarmed Bandit algorithms can be tested in data sets of different complexity, which can actually perform well in changing products. It is helpful to predict the preferences of the promotion model.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/8836000</identifier><language>eng</language><publisher>LONDON: Hindawi</publisher><subject>Algorithms ; Consumers ; Datasets ; Electronic commerce ; Engineering ; Engineering, Multidisciplinary ; Expected values ; Feedback ; Machine learning ; Mathematical problems ; Mathematics ; Mathematics, Interdisciplinary Applications ; Multi-armed bandit problems ; Physical Sciences ; Sales ; Science & Technology ; Technology ; Websites</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020, p.1-10, Article 8836000</ispartof><rights>Copyright © 2020 Jyh-Yih Hsu et al.</rights><rights>Copyright © 2020 Jyh-Yih Hsu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>7</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000613007900001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c380t-35652f6eaacb51f1e3c49386ea43d9a3984d427eb6b7e66caaf36715a0b103523</citedby><cites>FETCH-LOGICAL-c380t-35652f6eaacb51f1e3c49386ea43d9a3984d427eb6b7e66caaf36715a0b103523</cites><orcidid>0000-0003-0410-3843 ; 0000-0002-8964-9855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27927,27928,27929</link.rule.ids></links><search><contributor>Hung, Jason C.</contributor><contributor>Jason C Hung</contributor><creatorcontrib>Hsu, Jyh-Yih</creatorcontrib><creatorcontrib>Tseng, Wei-Kuo</creatorcontrib><creatorcontrib>Hsieh, Jia-You</creatorcontrib><creatorcontrib>Chang, Chao-Jen</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><title>The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms</title><title>Mathematical problems in engineering</title><addtitle>MATH PROBL ENG</addtitle><description>In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine the degree of preference for website solutions, which required a large number of tests for evaluation, and could not respond to environmental variables that made it difficult to predict the actual recommendation in advance. Therefore, in this study, the reinforcement learning model combined with different contextual Multiarmed Bandit algorithms can be tested in data sets of different complexity, which can actually perform well in changing products. It is helpful to predict the preferences of the promotion model.</description><subject>Algorithms</subject><subject>Consumers</subject><subject>Datasets</subject><subject>Electronic commerce</subject><subject>Engineering</subject><subject>Engineering, Multidisciplinary</subject><subject>Expected values</subject><subject>Feedback</subject><subject>Machine learning</subject><subject>Mathematical problems</subject><subject>Mathematics</subject><subject>Mathematics, Interdisciplinary Applications</subject><subject>Multi-armed bandit problems</subject><subject>Physical Sciences</subject><subject>Sales</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Websites</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkM1q3DAUhU1pIGnSXR5A0GXj5kqyZHs5MekPTEjID3RnZPl6RsGWEklm2tfIE1dmQrsLXeney3fOESfLTil8oVSIcwYMzquKSwB4lx1RIXkuaFG-TzOwIqeM_zzMPoTwCMCooNVR9nK_RXKL2k0T2t7YDVltvNHzGGevRnLjXT_rSO7UiGHZJheNs-TK9UiMJZd5syi9RvIQFvUtGju4tCe7SNaovF3OOxO3pHE24q84J9-rFGCUn7AnFyrlRrIaN84nagon2cGgxoAfX9_j7OHr5X3zPV9ff_vRrNa55hXEnAsp2CBRKd0JOlDkuqh5lQ4F72vF66roC1ZiJ7sSpdRKDVyWVCjoKHDB-HH2ae_75N3zjCG2j272NkW2rKiAMiFqnqizPaW9C8Hj0D55Myn_u6XQLq23S-vta-sJ_7zHd9i5IWiDVuNfSSIk5QBlnSagia7-n25MVEv5jZtt_Be0NbZXO_P2t_4AXSGkIw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Hsu, Jyh-Yih</creator><creator>Tseng, Wei-Kuo</creator><creator>Hsieh, Jia-You</creator><creator>Chang, Chao-Jen</creator><creator>Chen, Huan</creator><general>Hindawi</general><general>Hindawi Publishing Group</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0410-3843</orcidid><orcidid>https://orcid.org/0000-0002-8964-9855</orcidid></search><sort><creationdate>2020</creationdate><title>The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms</title><author>Hsu, Jyh-Yih ; Tseng, Wei-Kuo ; Hsieh, Jia-You ; Chang, Chao-Jen ; Chen, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-35652f6eaacb51f1e3c49386ea43d9a3984d427eb6b7e66caaf36715a0b103523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Consumers</topic><topic>Datasets</topic><topic>Electronic commerce</topic><topic>Engineering</topic><topic>Engineering, Multidisciplinary</topic><topic>Expected values</topic><topic>Feedback</topic><topic>Machine learning</topic><topic>Mathematical problems</topic><topic>Mathematics</topic><topic>Mathematics, Interdisciplinary Applications</topic><topic>Multi-armed bandit problems</topic><topic>Physical Sciences</topic><topic>Sales</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsu, Jyh-Yih</creatorcontrib><creatorcontrib>Tseng, Wei-Kuo</creatorcontrib><creatorcontrib>Hsieh, Jia-You</creatorcontrib><creatorcontrib>Chang, Chao-Jen</creatorcontrib><creatorcontrib>Chen, Huan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsu, Jyh-Yih</au><au>Tseng, Wei-Kuo</au><au>Hsieh, Jia-You</au><au>Chang, Chao-Jen</au><au>Chen, Huan</au><au>Hung, Jason C.</au><au>Jason C Hung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms</atitle><jtitle>Mathematical problems in engineering</jtitle><stitle>MATH PROBL ENG</stitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><artnum>8836000</artnum><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In recent years, sales of agricultural products in Taiwan have been transformed into electronic marketing, and agricultural products with better consumer orientation have been recommended, and farmers’ income has been improved through sales websites. In the past, A/B testing was used to determine the degree of preference for website solutions, which required a large number of tests for evaluation, and could not respond to environmental variables that made it difficult to predict the actual recommendation in advance. Therefore, in this study, the reinforcement learning model combined with different contextual Multiarmed Bandit algorithms can be tested in data sets of different complexity, which can actually perform well in changing products. It is helpful to predict the preferences of the promotion model.</abstract><cop>LONDON</cop><pub>Hindawi</pub><doi>10.1155/2020/8836000</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0410-3843</orcidid><orcidid>https://orcid.org/0000-0002-8964-9855</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020, p.1-10, Article 8836000 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2480125593 |
source | EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Algorithms Consumers Datasets Electronic commerce Engineering Engineering, Multidisciplinary Expected values Feedback Machine learning Mathematical problems Mathematics Mathematics, Interdisciplinary Applications Multi-armed bandit problems Physical Sciences Sales Science & Technology Technology Websites |
title | The Recommending Agricultural Product Sales Promotion Mode in E-Commerce Using Reinforcement Learning with Contextual Multiarmed Bandit Algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Recommending%20Agricultural%20Product%20Sales%20Promotion%20Mode%20in%20E-Commerce%20Using%20Reinforcement%20Learning%20with%20Contextual%20Multiarmed%20Bandit%20Algorithms&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Hsu,%20Jyh-Yih&rft.date=2020&rft.volume=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.artnum=8836000&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/8836000&rft_dat=%3Cproquest_webof%3E2480125593%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480125593&rft_id=info:pmid/&rfr_iscdi=true |