Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor
In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m 2 g −1 ). A variety of...
Gespeichert in:
Veröffentlicht in: | Ionics 2021-02, Vol.27 (2), p.811-818 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 818 |
---|---|
container_issue | 2 |
container_start_page | 811 |
container_title | Ionics |
container_volume | 27 |
creator | Zhang, Qian Zhao, Peng Yang, Sudong Yan, Qiang Sun, Maosong Zhu, Jie |
description | In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m
2
g
−1
). A variety of faradaic-active species (pyrrolic-N, pyridine-N, quaternary-N) provide many electrochemically active sites. The
R
ct
of the NAC decreased by approximately 31.25% and the capacitances of the NAC increased by approximately 45.7% compared with the AC in a three-electrode configuration in 1 M Na
2
SO
4
solution. Besides, it could retain 96.1% after 5000 cycles at 1 A g
−1
. The NAC device could achieve the high capacitance of 40 F g
−1
in 1 M LiPF
6
/PC and high energy density of 50 Wh kg
−1
at 0.762 kW kg
−1
. It provides a new way to improve the capacitances and conductivity of commercial active carbon. |
doi_str_mv | 10.1007/s11581-020-03832-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2480084650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480084650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3faea452c1b8794bc3e77dae94cfb0414ddf25dc367aab5bf90038e00a52e91d3</originalsourceid><addsrcrecordid>eNqNkE1vFSEUhonRxGv1D7gicWmoB4YZZpbNTT9MGt3omjBw6NC0wwhM2-uvlzqm3TWuIDnPA-95CfnI4ZgDqC-Z87bnDAQwaPpGsIdXZMf7TjBQHbwmOxikYgqkekve5XwN0HVcqB2ZTn4Hh8zkHHJBR6eDS7FMmG7NDc2HuV7rhEZPvzEXl0oYW8IdUmvSGGd6H8pEp3A1URtntz7OQjlQHxPN64LJmsXYUGJ6T954c5Pxw7_ziPw8O_2xv2CX38-_7k8umW34UFjjDRrZCsvHXg1ytA0q5QwO0voRJJfOedE623TKmLEd_QB1YQQwrcCBu-aIfNreXVL8tWIu-jquaa5faiF7gF52LVRKbJRNMeeEXi8p3Jp00Bz0Y6N6a1TXRvXfRvVDlT5v0j2O0WcbcLb4JAJAO3AOsiaqmSrd_z-9D8WUEOd9XOdS1WZTc8XnK0zPO7wQ7w9LKp0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480084650</pqid></control><display><type>article</type><title>Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Zhang, Qian ; Zhao, Peng ; Yang, Sudong ; Yan, Qiang ; Sun, Maosong ; Zhu, Jie</creator><creatorcontrib>Zhang, Qian ; Zhao, Peng ; Yang, Sudong ; Yan, Qiang ; Sun, Maosong ; Zhu, Jie</creatorcontrib><description>In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m
2
g
−1
). A variety of faradaic-active species (pyrrolic-N, pyridine-N, quaternary-N) provide many electrochemically active sites. The
R
ct
of the NAC decreased by approximately 31.25% and the capacitances of the NAC increased by approximately 45.7% compared with the AC in a three-electrode configuration in 1 M Na
2
SO
4
solution. Besides, it could retain 96.1% after 5000 cycles at 1 A g
−1
. The NAC device could achieve the high capacitance of 40 F g
−1
in 1 M LiPF
6
/PC and high energy density of 50 Wh kg
−1
at 0.762 kW kg
−1
. It provides a new way to improve the capacitances and conductivity of commercial active carbon.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03832-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activated carbon ; Carbon ; Chemistry ; Chemistry and Materials Science ; Chemistry, Physical ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Flux density ; Graphical representations ; Graphitization ; Optical and Electronic Materials ; Original Paper ; Physical Sciences ; Physics ; Physics, Condensed Matter ; Renewable and Green Energy ; Science & Technology ; Sodium azides ; Sodium sulfate</subject><ispartof>Ionics, 2021-02, Vol.27 (2), p.811-818</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000591104900003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-3faea452c1b8794bc3e77dae94cfb0414ddf25dc367aab5bf90038e00a52e91d3</citedby><cites>FETCH-LOGICAL-c319t-3faea452c1b8794bc3e77dae94cfb0414ddf25dc367aab5bf90038e00a52e91d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03832-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03832-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yang, Sudong</creatorcontrib><creatorcontrib>Yan, Qiang</creatorcontrib><creatorcontrib>Sun, Maosong</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><title>Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor</title><title>Ionics</title><addtitle>Ionics</addtitle><addtitle>IONICS</addtitle><description>In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m
2
g
−1
). A variety of faradaic-active species (pyrrolic-N, pyridine-N, quaternary-N) provide many electrochemically active sites. The
R
ct
of the NAC decreased by approximately 31.25% and the capacitances of the NAC increased by approximately 45.7% compared with the AC in a three-electrode configuration in 1 M Na
2
SO
4
solution. Besides, it could retain 96.1% after 5000 cycles at 1 A g
−1
. The NAC device could achieve the high capacitance of 40 F g
−1
in 1 M LiPF
6
/PC and high energy density of 50 Wh kg
−1
at 0.762 kW kg
−1
. It provides a new way to improve the capacitances and conductivity of commercial active carbon.</description><subject>Activated carbon</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Physical</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Flux density</subject><subject>Graphical representations</subject><subject>Graphitization</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Condensed Matter</subject><subject>Renewable and Green Energy</subject><subject>Science & Technology</subject><subject>Sodium azides</subject><subject>Sodium sulfate</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1vFSEUhonRxGv1D7gicWmoB4YZZpbNTT9MGt3omjBw6NC0wwhM2-uvlzqm3TWuIDnPA-95CfnI4ZgDqC-Z87bnDAQwaPpGsIdXZMf7TjBQHbwmOxikYgqkekve5XwN0HVcqB2ZTn4Hh8zkHHJBR6eDS7FMmG7NDc2HuV7rhEZPvzEXl0oYW8IdUmvSGGd6H8pEp3A1URtntz7OQjlQHxPN64LJmsXYUGJ6T954c5Pxw7_ziPw8O_2xv2CX38-_7k8umW34UFjjDRrZCsvHXg1ytA0q5QwO0voRJJfOedE623TKmLEd_QB1YQQwrcCBu-aIfNreXVL8tWIu-jquaa5faiF7gF52LVRKbJRNMeeEXi8p3Jp00Bz0Y6N6a1TXRvXfRvVDlT5v0j2O0WcbcLb4JAJAO3AOsiaqmSrd_z-9D8WUEOd9XOdS1WZTc8XnK0zPO7wQ7w9LKp0A</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Qian</creator><creator>Zhao, Peng</creator><creator>Yang, Sudong</creator><creator>Yan, Qiang</creator><creator>Sun, Maosong</creator><creator>Zhu, Jie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor</title><author>Zhang, Qian ; Zhao, Peng ; Yang, Sudong ; Yan, Qiang ; Sun, Maosong ; Zhu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3faea452c1b8794bc3e77dae94cfb0414ddf25dc367aab5bf90038e00a52e91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Physical</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Flux density</topic><topic>Graphical representations</topic><topic>Graphitization</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Condensed Matter</topic><topic>Renewable and Green Energy</topic><topic>Science & Technology</topic><topic>Sodium azides</topic><topic>Sodium sulfate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yang, Sudong</creatorcontrib><creatorcontrib>Yan, Qiang</creatorcontrib><creatorcontrib>Sun, Maosong</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian</au><au>Zhao, Peng</au><au>Yang, Sudong</au><au>Yan, Qiang</au><au>Sun, Maosong</au><au>Zhu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><stitle>IONICS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>811</spage><epage>818</epage><pages>811-818</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m
2
g
−1
). A variety of faradaic-active species (pyrrolic-N, pyridine-N, quaternary-N) provide many electrochemically active sites. The
R
ct
of the NAC decreased by approximately 31.25% and the capacitances of the NAC increased by approximately 45.7% compared with the AC in a three-electrode configuration in 1 M Na
2
SO
4
solution. Besides, it could retain 96.1% after 5000 cycles at 1 A g
−1
. The NAC device could achieve the high capacitance of 40 F g
−1
in 1 M LiPF
6
/PC and high energy density of 50 Wh kg
−1
at 0.762 kW kg
−1
. It provides a new way to improve the capacitances and conductivity of commercial active carbon.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03832-x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2021-02, Vol.27 (2), p.811-818 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2480084650 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Activated carbon Carbon Chemistry Chemistry and Materials Science Chemistry, Physical Condensed Matter Physics Electrochemistry Energy Storage Flux density Graphical representations Graphitization Optical and Electronic Materials Original Paper Physical Sciences Physics Physics, Condensed Matter Renewable and Green Energy Science & Technology Sodium azides Sodium sulfate |
title | Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Azide-assisted%20hydrothermal%20synthesis%20of%20N-doped%20active%20carbon%20with%20high%20conductivity%20for%20supercapacitor&rft.jtitle=Ionics&rft.au=Zhang,%20Qian&rft.date=2021-02-01&rft.volume=27&rft.issue=2&rft.spage=811&rft.epage=818&rft.pages=811-818&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03832-x&rft_dat=%3Cproquest_webof%3E2480084650%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480084650&rft_id=info:pmid/&rfr_iscdi=true |