Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor

In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m 2  g −1 ). A variety of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2021-02, Vol.27 (2), p.811-818
Hauptverfasser: Zhang, Qian, Zhao, Peng, Yang, Sudong, Yan, Qiang, Sun, Maosong, Zhu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 818
container_issue 2
container_start_page 811
container_title Ionics
container_volume 27
creator Zhang, Qian
Zhao, Peng
Yang, Sudong
Yan, Qiang
Sun, Maosong
Zhu, Jie
description In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m 2  g −1 ). A variety of faradaic-active species (pyrrolic-N, pyridine-N, quaternary-N) provide many electrochemically active sites. The R ct of the NAC decreased by approximately 31.25% and the capacitances of the NAC increased by approximately 45.7% compared with the AC in a three-electrode configuration in 1 M Na 2 SO 4 solution. Besides, it could retain 96.1% after 5000 cycles at 1 A g −1 . The NAC device could achieve the high capacitance of 40 F g −1 in 1 M LiPF 6 /PC and high energy density of 50 Wh kg −1 at 0.762 kW kg −1 . It provides a new way to improve the capacitances and conductivity of commercial active carbon.
doi_str_mv 10.1007/s11581-020-03832-x
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2480084650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480084650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-3faea452c1b8794bc3e77dae94cfb0414ddf25dc367aab5bf90038e00a52e91d3</originalsourceid><addsrcrecordid>eNqNkE1vFSEUhonRxGv1D7gicWmoB4YZZpbNTT9MGt3omjBw6NC0wwhM2-uvlzqm3TWuIDnPA-95CfnI4ZgDqC-Z87bnDAQwaPpGsIdXZMf7TjBQHbwmOxikYgqkekve5XwN0HVcqB2ZTn4Hh8zkHHJBR6eDS7FMmG7NDc2HuV7rhEZPvzEXl0oYW8IdUmvSGGd6H8pEp3A1URtntz7OQjlQHxPN64LJmsXYUGJ6T954c5Pxw7_ziPw8O_2xv2CX38-_7k8umW34UFjjDRrZCsvHXg1ytA0q5QwO0voRJJfOedE623TKmLEd_QB1YQQwrcCBu-aIfNreXVL8tWIu-jquaa5faiF7gF52LVRKbJRNMeeEXi8p3Jp00Bz0Y6N6a1TXRvXfRvVDlT5v0j2O0WcbcLb4JAJAO3AOsiaqmSrd_z-9D8WUEOd9XOdS1WZTc8XnK0zPO7wQ7w9LKp0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480084650</pqid></control><display><type>article</type><title>Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Zhang, Qian ; Zhao, Peng ; Yang, Sudong ; Yan, Qiang ; Sun, Maosong ; Zhu, Jie</creator><creatorcontrib>Zhang, Qian ; Zhao, Peng ; Yang, Sudong ; Yan, Qiang ; Sun, Maosong ; Zhu, Jie</creatorcontrib><description>In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m 2  g −1 ). A variety of faradaic-active species (pyrrolic-N, pyridine-N, quaternary-N) provide many electrochemically active sites. The R ct of the NAC decreased by approximately 31.25% and the capacitances of the NAC increased by approximately 45.7% compared with the AC in a three-electrode configuration in 1 M Na 2 SO 4 solution. Besides, it could retain 96.1% after 5000 cycles at 1 A g −1 . The NAC device could achieve the high capacitance of 40 F g −1 in 1 M LiPF 6 /PC and high energy density of 50 Wh kg −1 at 0.762 kW kg −1 . It provides a new way to improve the capacitances and conductivity of commercial active carbon.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03832-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activated carbon ; Carbon ; Chemistry ; Chemistry and Materials Science ; Chemistry, Physical ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Flux density ; Graphical representations ; Graphitization ; Optical and Electronic Materials ; Original Paper ; Physical Sciences ; Physics ; Physics, Condensed Matter ; Renewable and Green Energy ; Science &amp; Technology ; Sodium azides ; Sodium sulfate</subject><ispartof>Ionics, 2021-02, Vol.27 (2), p.811-818</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000591104900003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-3faea452c1b8794bc3e77dae94cfb0414ddf25dc367aab5bf90038e00a52e91d3</citedby><cites>FETCH-LOGICAL-c319t-3faea452c1b8794bc3e77dae94cfb0414ddf25dc367aab5bf90038e00a52e91d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03832-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03832-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,39265,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yang, Sudong</creatorcontrib><creatorcontrib>Yan, Qiang</creatorcontrib><creatorcontrib>Sun, Maosong</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><title>Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor</title><title>Ionics</title><addtitle>Ionics</addtitle><addtitle>IONICS</addtitle><description>In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m 2  g −1 ). A variety of faradaic-active species (pyrrolic-N, pyridine-N, quaternary-N) provide many electrochemically active sites. The R ct of the NAC decreased by approximately 31.25% and the capacitances of the NAC increased by approximately 45.7% compared with the AC in a three-electrode configuration in 1 M Na 2 SO 4 solution. Besides, it could retain 96.1% after 5000 cycles at 1 A g −1 . The NAC device could achieve the high capacitance of 40 F g −1 in 1 M LiPF 6 /PC and high energy density of 50 Wh kg −1 at 0.762 kW kg −1 . It provides a new way to improve the capacitances and conductivity of commercial active carbon.</description><subject>Activated carbon</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry, Physical</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Flux density</subject><subject>Graphical representations</subject><subject>Graphitization</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Condensed Matter</subject><subject>Renewable and Green Energy</subject><subject>Science &amp; Technology</subject><subject>Sodium azides</subject><subject>Sodium sulfate</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkE1vFSEUhonRxGv1D7gicWmoB4YZZpbNTT9MGt3omjBw6NC0wwhM2-uvlzqm3TWuIDnPA-95CfnI4ZgDqC-Z87bnDAQwaPpGsIdXZMf7TjBQHbwmOxikYgqkekve5XwN0HVcqB2ZTn4Hh8zkHHJBR6eDS7FMmG7NDc2HuV7rhEZPvzEXl0oYW8IdUmvSGGd6H8pEp3A1URtntz7OQjlQHxPN64LJmsXYUGJ6T954c5Pxw7_ziPw8O_2xv2CX38-_7k8umW34UFjjDRrZCsvHXg1ytA0q5QwO0voRJJfOedE623TKmLEd_QB1YQQwrcCBu-aIfNreXVL8tWIu-jquaa5faiF7gF52LVRKbJRNMeeEXi8p3Jp00Bz0Y6N6a1TXRvXfRvVDlT5v0j2O0WcbcLb4JAJAO3AOsiaqmSrd_z-9D8WUEOd9XOdS1WZTc8XnK0zPO7wQ7w9LKp0A</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Qian</creator><creator>Zhao, Peng</creator><creator>Yang, Sudong</creator><creator>Yan, Qiang</creator><creator>Sun, Maosong</creator><creator>Zhu, Jie</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor</title><author>Zhang, Qian ; Zhao, Peng ; Yang, Sudong ; Yan, Qiang ; Sun, Maosong ; Zhu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-3faea452c1b8794bc3e77dae94cfb0414ddf25dc367aab5bf90038e00a52e91d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry, Physical</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Flux density</topic><topic>Graphical representations</topic><topic>Graphitization</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Condensed Matter</topic><topic>Renewable and Green Energy</topic><topic>Science &amp; Technology</topic><topic>Sodium azides</topic><topic>Sodium sulfate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Zhao, Peng</creatorcontrib><creatorcontrib>Yang, Sudong</creatorcontrib><creatorcontrib>Yan, Qiang</creatorcontrib><creatorcontrib>Sun, Maosong</creatorcontrib><creatorcontrib>Zhu, Jie</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qian</au><au>Zhao, Peng</au><au>Yang, Sudong</au><au>Yan, Qiang</au><au>Sun, Maosong</au><au>Zhu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><stitle>IONICS</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>811</spage><epage>818</epage><pages>811-818</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>In our investigation, the sodium azide–assisted hydrothermal method was employed to prepare the N-doped active carbon (NAC). The TEM image shows that the NAC demonstrated lattice fringes (0.398 nm) representing the graphitized area. The NAC has high adsorption surface (1903 m 2  g −1 ). A variety of faradaic-active species (pyrrolic-N, pyridine-N, quaternary-N) provide many electrochemically active sites. The R ct of the NAC decreased by approximately 31.25% and the capacitances of the NAC increased by approximately 45.7% compared with the AC in a three-electrode configuration in 1 M Na 2 SO 4 solution. Besides, it could retain 96.1% after 5000 cycles at 1 A g −1 . The NAC device could achieve the high capacitance of 40 F g −1 in 1 M LiPF 6 /PC and high energy density of 50 Wh kg −1 at 0.762 kW kg −1 . It provides a new way to improve the capacitances and conductivity of commercial active carbon.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03832-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2021-02, Vol.27 (2), p.811-818
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2480084650
source SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Activated carbon
Carbon
Chemistry
Chemistry and Materials Science
Chemistry, Physical
Condensed Matter Physics
Electrochemistry
Energy Storage
Flux density
Graphical representations
Graphitization
Optical and Electronic Materials
Original Paper
Physical Sciences
Physics
Physics, Condensed Matter
Renewable and Green Energy
Science & Technology
Sodium azides
Sodium sulfate
title Azide-assisted hydrothermal synthesis of N-doped active carbon with high conductivity for supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T13%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Azide-assisted%20hydrothermal%20synthesis%20of%20N-doped%20active%20carbon%20with%20high%20conductivity%20for%20supercapacitor&rft.jtitle=Ionics&rft.au=Zhang,%20Qian&rft.date=2021-02-01&rft.volume=27&rft.issue=2&rft.spage=811&rft.epage=818&rft.pages=811-818&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03832-x&rft_dat=%3Cproquest_webof%3E2480084650%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480084650&rft_id=info:pmid/&rfr_iscdi=true