Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery
The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practi...
Gespeichert in:
Veröffentlicht in: | Ionics 2021-02, Vol.27 (2), p.683-691 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 691 |
---|---|
container_issue | 2 |
container_start_page | 683 |
container_title | Ionics |
container_volume | 27 |
creator | Zhang, Qimeng Wang, Zhixing Li, Xinhai Guo, Huajun Wang, Jiexi Yan, Guochun |
description | The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practical application. Thus, the central question is how to build a stable SEI film onto the electrode surface. Here, we propose and experimentally demonstrate a LiF-rich SEI film at the surface of hard carbon (HC) anode in sodium-ion battery, which is generated by adding lithium difluoro(oxalate)borate (LiODFB) additive into the electrolyte of 1 M NaPF
6
in EC:DMC (1:1 in volume ratio). The X-ray photoelectron spectroscopy (XPS) and electron microscopy (SEM and TEM) results confirm that we obtain the LiF-rich SEI film at the HC electrode surface, which grows up with the increasing of the concentration of added LiODFB additive. But it blocks the transmission of Na ions into HC as evidenced by the initial galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) results. Although this work shows a negative result, it denies the possibility of using the lithium compounds with lower solubility as SEI components for Na-ion battery since it allows to transfer the lithium ions rather than the Na ions. |
doi_str_mv | 10.1007/s11581-020-03845-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480083940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480083940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c69ab2bbe30f39c7cf41d7971a9eada1a450f3e2f098680413fbfcf8670616073</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SySfNx1NpqYaGH2nPI7iZ1y3ZTk22h_96tK3jzNDDzvO_Ag9A9hUcKIJ8SpRNFCWRAgCk-IeICjagSGQEp4BKNQHNJJHB5jW5S2gIIQTM5Qqt1G-3RNXW7wd2nwzE0DgeP83r5On_ByTYdtglbvJotiA9xdwZtVdVdfXS4X-AUqvqwI3VocWG7zsXTLbrytknu7neO0Xo--5i-k3z5tpg-56RkVHekFNoWWVE4Bp7pUpae00pqSa12trLU8kl_cJkHrYQCTpkvfOmVkCCoAMnG6GHo3cfwdXCpM9twiG3_0mRcASimOfRUNlBlDClF580-1jsbT4aCOcszgzzTyzM_8ozoQ2wIpR5uNy7-Vf-T-gY4tnDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480083940</pqid></control><display><type>article</type><title>Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Qimeng ; Wang, Zhixing ; Li, Xinhai ; Guo, Huajun ; Wang, Jiexi ; Yan, Guochun</creator><creatorcontrib>Zhang, Qimeng ; Wang, Zhixing ; Li, Xinhai ; Guo, Huajun ; Wang, Jiexi ; Yan, Guochun</creatorcontrib><description>The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practical application. Thus, the central question is how to build a stable SEI film onto the electrode surface. Here, we propose and experimentally demonstrate a LiF-rich SEI film at the surface of hard carbon (HC) anode in sodium-ion battery, which is generated by adding lithium difluoro(oxalate)borate (LiODFB) additive into the electrolyte of 1 M NaPF
6
in EC:DMC (1:1 in volume ratio). The X-ray photoelectron spectroscopy (XPS) and electron microscopy (SEM and TEM) results confirm that we obtain the LiF-rich SEI film at the HC electrode surface, which grows up with the increasing of the concentration of added LiODFB additive. But it blocks the transmission of Na ions into HC as evidenced by the initial galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) results. Although this work shows a negative result, it denies the possibility of using the lithium compounds with lower solubility as SEI components for Na-ion battery since it allows to transfer the lithium ions rather than the Na ions.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03845-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Discharge ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electrolytes ; Energy Storage ; Lithium ; Lithium compounds ; Lithium fluoride ; Lithium ions ; Optical and Electronic Materials ; Original Paper ; Photoelectrons ; Rechargeable batteries ; Renewable and Green Energy ; Sodium ; Sodium-ion batteries ; Spectrum analysis ; X ray photoelectron spectroscopy</subject><ispartof>Ionics, 2021-02, Vol.27 (2), p.683-691</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c69ab2bbe30f39c7cf41d7971a9eada1a450f3e2f098680413fbfcf8670616073</citedby><cites>FETCH-LOGICAL-c319t-c69ab2bbe30f39c7cf41d7971a9eada1a450f3e2f098680413fbfcf8670616073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03845-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03845-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Qimeng</creatorcontrib><creatorcontrib>Wang, Zhixing</creatorcontrib><creatorcontrib>Li, Xinhai</creatorcontrib><creatorcontrib>Guo, Huajun</creatorcontrib><creatorcontrib>Wang, Jiexi</creatorcontrib><creatorcontrib>Yan, Guochun</creatorcontrib><title>Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practical application. Thus, the central question is how to build a stable SEI film onto the electrode surface. Here, we propose and experimentally demonstrate a LiF-rich SEI film at the surface of hard carbon (HC) anode in sodium-ion battery, which is generated by adding lithium difluoro(oxalate)borate (LiODFB) additive into the electrolyte of 1 M NaPF
6
in EC:DMC (1:1 in volume ratio). The X-ray photoelectron spectroscopy (XPS) and electron microscopy (SEM and TEM) results confirm that we obtain the LiF-rich SEI film at the HC electrode surface, which grows up with the increasing of the concentration of added LiODFB additive. But it blocks the transmission of Na ions into HC as evidenced by the initial galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) results. Although this work shows a negative result, it denies the possibility of using the lithium compounds with lower solubility as SEI components for Na-ion battery since it allows to transfer the lithium ions rather than the Na ions.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Discharge</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Lithium</subject><subject>Lithium compounds</subject><subject>Lithium fluoride</subject><subject>Lithium ions</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Photoelectrons</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SySfNx1NpqYaGH2nPI7iZ1y3ZTk22h_96tK3jzNDDzvO_Ag9A9hUcKIJ8SpRNFCWRAgCk-IeICjagSGQEp4BKNQHNJJHB5jW5S2gIIQTM5Qqt1G-3RNXW7wd2nwzE0DgeP83r5On_ByTYdtglbvJotiA9xdwZtVdVdfXS4X-AUqvqwI3VocWG7zsXTLbrytknu7neO0Xo--5i-k3z5tpg-56RkVHekFNoWWVE4Bp7pUpae00pqSa12trLU8kl_cJkHrYQCTpkvfOmVkCCoAMnG6GHo3cfwdXCpM9twiG3_0mRcASimOfRUNlBlDClF580-1jsbT4aCOcszgzzTyzM_8ozoQ2wIpR5uNy7-Vf-T-gY4tnDQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Qimeng</creator><creator>Wang, Zhixing</creator><creator>Li, Xinhai</creator><creator>Guo, Huajun</creator><creator>Wang, Jiexi</creator><creator>Yan, Guochun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery</title><author>Zhang, Qimeng ; Wang, Zhixing ; Li, Xinhai ; Guo, Huajun ; Wang, Jiexi ; Yan, Guochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c69ab2bbe30f39c7cf41d7971a9eada1a450f3e2f098680413fbfcf8670616073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Discharge</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Lithium</topic><topic>Lithium compounds</topic><topic>Lithium fluoride</topic><topic>Lithium ions</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Photoelectrons</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qimeng</creatorcontrib><creatorcontrib>Wang, Zhixing</creatorcontrib><creatorcontrib>Li, Xinhai</creatorcontrib><creatorcontrib>Guo, Huajun</creatorcontrib><creatorcontrib>Wang, Jiexi</creatorcontrib><creatorcontrib>Yan, Guochun</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qimeng</au><au>Wang, Zhixing</au><au>Li, Xinhai</au><au>Guo, Huajun</au><au>Wang, Jiexi</au><au>Yan, Guochun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>683</spage><epage>691</epage><pages>683-691</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practical application. Thus, the central question is how to build a stable SEI film onto the electrode surface. Here, we propose and experimentally demonstrate a LiF-rich SEI film at the surface of hard carbon (HC) anode in sodium-ion battery, which is generated by adding lithium difluoro(oxalate)borate (LiODFB) additive into the electrolyte of 1 M NaPF
6
in EC:DMC (1:1 in volume ratio). The X-ray photoelectron spectroscopy (XPS) and electron microscopy (SEM and TEM) results confirm that we obtain the LiF-rich SEI film at the HC electrode surface, which grows up with the increasing of the concentration of added LiODFB additive. But it blocks the transmission of Na ions into HC as evidenced by the initial galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) results. Although this work shows a negative result, it denies the possibility of using the lithium compounds with lower solubility as SEI components for Na-ion battery since it allows to transfer the lithium ions rather than the Na ions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03845-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2021-02, Vol.27 (2), p.683-691 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2480083940 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemistry Chemistry and Materials Science Condensed Matter Physics Discharge Electrochemical impedance spectroscopy Electrochemistry Electrodes Electrolytes Energy Storage Lithium Lithium compounds Lithium fluoride Lithium ions Optical and Electronic Materials Original Paper Photoelectrons Rechargeable batteries Renewable and Green Energy Sodium Sodium-ion batteries Spectrum analysis X ray photoelectron spectroscopy |
title | Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20role%20of%20LiODFB%20salt%20as%20a%20SEI-forming%20additive%20for%20sodium-ion%20battery&rft.jtitle=Ionics&rft.au=Zhang,%20Qimeng&rft.date=2021-02-01&rft.volume=27&rft.issue=2&rft.spage=683&rft.epage=691&rft.pages=683-691&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03845-6&rft_dat=%3Cproquest_cross%3E2480083940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480083940&rft_id=info:pmid/&rfr_iscdi=true |