Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery

The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2021-02, Vol.27 (2), p.683-691
Hauptverfasser: Zhang, Qimeng, Wang, Zhixing, Li, Xinhai, Guo, Huajun, Wang, Jiexi, Yan, Guochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue 2
container_start_page 683
container_title Ionics
container_volume 27
creator Zhang, Qimeng
Wang, Zhixing
Li, Xinhai
Guo, Huajun
Wang, Jiexi
Yan, Guochun
description The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practical application. Thus, the central question is how to build a stable SEI film onto the electrode surface. Here, we propose and experimentally demonstrate a LiF-rich SEI film at the surface of hard carbon (HC) anode in sodium-ion battery, which is generated by adding lithium difluoro(oxalate)borate (LiODFB) additive into the electrolyte of 1 M NaPF 6 in EC:DMC (1:1 in volume ratio). The X-ray photoelectron spectroscopy (XPS) and electron microscopy (SEM and TEM) results confirm that we obtain the LiF-rich SEI film at the HC electrode surface, which grows up with the increasing of the concentration of added LiODFB additive. But it blocks the transmission of Na ions into HC as evidenced by the initial galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) results. Although this work shows a negative result, it denies the possibility of using the lithium compounds with lower solubility as SEI components for Na-ion battery since it allows to transfer the lithium ions rather than the Na ions.
doi_str_mv 10.1007/s11581-020-03845-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480083940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2480083940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c69ab2bbe30f39c7cf41d7971a9eada1a450f3e2f098680413fbfcf8670616073</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SySfNx1NpqYaGH2nPI7iZ1y3ZTk22h_96tK3jzNDDzvO_Ag9A9hUcKIJ8SpRNFCWRAgCk-IeICjagSGQEp4BKNQHNJJHB5jW5S2gIIQTM5Qqt1G-3RNXW7wd2nwzE0DgeP83r5On_ByTYdtglbvJotiA9xdwZtVdVdfXS4X-AUqvqwI3VocWG7zsXTLbrytknu7neO0Xo--5i-k3z5tpg-56RkVHekFNoWWVE4Bp7pUpae00pqSa12trLU8kl_cJkHrYQCTpkvfOmVkCCoAMnG6GHo3cfwdXCpM9twiG3_0mRcASimOfRUNlBlDClF580-1jsbT4aCOcszgzzTyzM_8ozoQ2wIpR5uNy7-Vf-T-gY4tnDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480083940</pqid></control><display><type>article</type><title>Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Qimeng ; Wang, Zhixing ; Li, Xinhai ; Guo, Huajun ; Wang, Jiexi ; Yan, Guochun</creator><creatorcontrib>Zhang, Qimeng ; Wang, Zhixing ; Li, Xinhai ; Guo, Huajun ; Wang, Jiexi ; Yan, Guochun</creatorcontrib><description>The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practical application. Thus, the central question is how to build a stable SEI film onto the electrode surface. Here, we propose and experimentally demonstrate a LiF-rich SEI film at the surface of hard carbon (HC) anode in sodium-ion battery, which is generated by adding lithium difluoro(oxalate)borate (LiODFB) additive into the electrolyte of 1 M NaPF 6 in EC:DMC (1:1 in volume ratio). The X-ray photoelectron spectroscopy (XPS) and electron microscopy (SEM and TEM) results confirm that we obtain the LiF-rich SEI film at the HC electrode surface, which grows up with the increasing of the concentration of added LiODFB additive. But it blocks the transmission of Na ions into HC as evidenced by the initial galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) results. Although this work shows a negative result, it denies the possibility of using the lithium compounds with lower solubility as SEI components for Na-ion battery since it allows to transfer the lithium ions rather than the Na ions.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-020-03845-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Discharge ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electrolytes ; Energy Storage ; Lithium ; Lithium compounds ; Lithium fluoride ; Lithium ions ; Optical and Electronic Materials ; Original Paper ; Photoelectrons ; Rechargeable batteries ; Renewable and Green Energy ; Sodium ; Sodium-ion batteries ; Spectrum analysis ; X ray photoelectron spectroscopy</subject><ispartof>Ionics, 2021-02, Vol.27 (2), p.683-691</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c69ab2bbe30f39c7cf41d7971a9eada1a450f3e2f098680413fbfcf8670616073</citedby><cites>FETCH-LOGICAL-c319t-c69ab2bbe30f39c7cf41d7971a9eada1a450f3e2f098680413fbfcf8670616073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-020-03845-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-020-03845-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhang, Qimeng</creatorcontrib><creatorcontrib>Wang, Zhixing</creatorcontrib><creatorcontrib>Li, Xinhai</creatorcontrib><creatorcontrib>Guo, Huajun</creatorcontrib><creatorcontrib>Wang, Jiexi</creatorcontrib><creatorcontrib>Yan, Guochun</creatorcontrib><title>Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practical application. Thus, the central question is how to build a stable SEI film onto the electrode surface. Here, we propose and experimentally demonstrate a LiF-rich SEI film at the surface of hard carbon (HC) anode in sodium-ion battery, which is generated by adding lithium difluoro(oxalate)borate (LiODFB) additive into the electrolyte of 1 M NaPF 6 in EC:DMC (1:1 in volume ratio). The X-ray photoelectron spectroscopy (XPS) and electron microscopy (SEM and TEM) results confirm that we obtain the LiF-rich SEI film at the HC electrode surface, which grows up with the increasing of the concentration of added LiODFB additive. But it blocks the transmission of Na ions into HC as evidenced by the initial galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) results. Although this work shows a negative result, it denies the possibility of using the lithium compounds with lower solubility as SEI components for Na-ion battery since it allows to transfer the lithium ions rather than the Na ions.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Discharge</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Energy Storage</subject><subject>Lithium</subject><subject>Lithium compounds</subject><subject>Lithium fluoride</subject><subject>Lithium ions</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Photoelectrons</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Spectrum analysis</subject><subject>X ray photoelectron spectroscopy</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3SySfNx1NpqYaGH2nPI7iZ1y3ZTk22h_96tK3jzNDDzvO_Ag9A9hUcKIJ8SpRNFCWRAgCk-IeICjagSGQEp4BKNQHNJJHB5jW5S2gIIQTM5Qqt1G-3RNXW7wd2nwzE0DgeP83r5On_ByTYdtglbvJotiA9xdwZtVdVdfXS4X-AUqvqwI3VocWG7zsXTLbrytknu7neO0Xo--5i-k3z5tpg-56RkVHekFNoWWVE4Bp7pUpae00pqSa12trLU8kl_cJkHrYQCTpkvfOmVkCCoAMnG6GHo3cfwdXCpM9twiG3_0mRcASimOfRUNlBlDClF580-1jsbT4aCOcszgzzTyzM_8ozoQ2wIpR5uNy7-Vf-T-gY4tnDQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Zhang, Qimeng</creator><creator>Wang, Zhixing</creator><creator>Li, Xinhai</creator><creator>Guo, Huajun</creator><creator>Wang, Jiexi</creator><creator>Yan, Guochun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery</title><author>Zhang, Qimeng ; Wang, Zhixing ; Li, Xinhai ; Guo, Huajun ; Wang, Jiexi ; Yan, Guochun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c69ab2bbe30f39c7cf41d7971a9eada1a450f3e2f098680413fbfcf8670616073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Discharge</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Energy Storage</topic><topic>Lithium</topic><topic>Lithium compounds</topic><topic>Lithium fluoride</topic><topic>Lithium ions</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Photoelectrons</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Spectrum analysis</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qimeng</creatorcontrib><creatorcontrib>Wang, Zhixing</creatorcontrib><creatorcontrib>Li, Xinhai</creatorcontrib><creatorcontrib>Guo, Huajun</creatorcontrib><creatorcontrib>Wang, Jiexi</creatorcontrib><creatorcontrib>Yan, Guochun</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qimeng</au><au>Wang, Zhixing</au><au>Li, Xinhai</au><au>Guo, Huajun</au><au>Wang, Jiexi</au><au>Yan, Guochun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>27</volume><issue>2</issue><spage>683</spage><epage>691</epage><pages>683-691</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The sodium-ion battery is a strong candidate for the large-scale energy storage device due to its low cost and abundant resources. However, the severe self-discharge issue, which is rooted in the dissolution of the solid-electrolyte interphase (SEI) film in the sodium-ion battery, impedes its practical application. Thus, the central question is how to build a stable SEI film onto the electrode surface. Here, we propose and experimentally demonstrate a LiF-rich SEI film at the surface of hard carbon (HC) anode in sodium-ion battery, which is generated by adding lithium difluoro(oxalate)borate (LiODFB) additive into the electrolyte of 1 M NaPF 6 in EC:DMC (1:1 in volume ratio). The X-ray photoelectron spectroscopy (XPS) and electron microscopy (SEM and TEM) results confirm that we obtain the LiF-rich SEI film at the HC electrode surface, which grows up with the increasing of the concentration of added LiODFB additive. But it blocks the transmission of Na ions into HC as evidenced by the initial galvanostatic charge/discharge, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) results. Although this work shows a negative result, it denies the possibility of using the lithium compounds with lower solubility as SEI components for Na-ion battery since it allows to transfer the lithium ions rather than the Na ions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-020-03845-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2021-02, Vol.27 (2), p.683-691
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2480083940
source SpringerLink Journals - AutoHoldings
subjects Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Discharge
Electrochemical impedance spectroscopy
Electrochemistry
Electrodes
Electrolytes
Energy Storage
Lithium
Lithium compounds
Lithium fluoride
Lithium ions
Optical and Electronic Materials
Original Paper
Photoelectrons
Rechargeable batteries
Renewable and Green Energy
Sodium
Sodium-ion batteries
Spectrum analysis
X ray photoelectron spectroscopy
title Unraveling the role of LiODFB salt as a SEI-forming additive for sodium-ion battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20role%20of%20LiODFB%20salt%20as%20a%20SEI-forming%20additive%20for%20sodium-ion%20battery&rft.jtitle=Ionics&rft.au=Zhang,%20Qimeng&rft.date=2021-02-01&rft.volume=27&rft.issue=2&rft.spage=683&rft.epage=691&rft.pages=683-691&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-020-03845-6&rft_dat=%3Cproquest_cross%3E2480083940%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480083940&rft_id=info:pmid/&rfr_iscdi=true