Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases
The ability of bacteria and fungi to degrade polymeric substrates is often assessed in liquid-based assays conducted by exposing polymers to planktonic cells, or cell-free supernatants or enzymes generated from them. These assessments miss the opportunity to specifically examine the role of biofilm...
Gespeichert in:
Veröffentlicht in: | International biodeterioration & biodegradation 2021-01, Vol.156, p.105121, Article 105121 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 105121 |
container_title | International biodeterioration & biodegradation |
container_volume | 156 |
creator | Nadeau, Lloyd J. Barlow, Daniel E. Hung, Chia-Suei Biffinger, Justin C. Crouch, Audra L. Hollomon, Jeffrey M. Ecker, Christopher D. Russell, John N. Crookes-Goodson, Wendy J. |
description | The ability of bacteria and fungi to degrade polymeric substrates is often assessed in liquid-based assays conducted by exposing polymers to planktonic cells, or cell-free supernatants or enzymes generated from them. These assessments miss the opportunity to specifically examine the role of biofilm formation and physiology in degradative processes. In a previous study, we examined the ability of cell-free supernatants from wildtype and hydrolase-deficient Pseudomonas protegens Pf-5 strains to degrade a commercial polyester polyurethane (PU). In this study, we developed the methodology to conduct spatial-temporal analysis of both biofilm colonization and degradation of polyester PU coatings using the same strains. Wild-type Pf-5 grew as confluent biofilms that produced tendrils containing viable cells; in contrast, Pf-5ΔpueAB, a mutant lacking PueA and PueB hydrolases, colonized the PU only by growing as a confluent biofilm but lacked tendril expansion. Degradation of PU by the wild-type hydrolases may alter the substrata, facilitating colonization by the biofilm. Chemical analysis by in situ Fourier transform infrared (FTIR) and Raman spectroscopies revealed the polyester block of the PU was preferentially degraded to varying degrees by the wild-type Pf-5 and mutant biofilms, and showed degradation due to PueB that was undetectable in liquid-based assays. Raman spectroscopy analysis of biofilms of Pf-5ΔpueAB grown on PU revealed a detectable, but the lowest, level of PU degradation relative to other strains. Degradation of PU by this mutant had previously been undetectable and this study revealed the existence of biofilm-associated hydrolytic mechanisms other than those driven by PueA and PueB. Taken together, our data suggest that both PueA and PueB hydrolases play a role in the colonization and degradation of a model polyester PU by P. protegens biofilms. This study demonstrates the importance of using biofilm-based assays to identify mechanisms of microbiologically-influenced degradation.
•PueA and PueB hydrolase activities mediate ester-bond cleavage during PU degradation by biofilm bacteria of P. protegens.•Air-surface biofilms permit non-invasive analysis of PU degradation.•Secreted PueA and PueB hydrolases facilitate motility of bacteria over solid PU surfaces.•Degradation of PU by Pseudomonas hydrolases creates tendril structures and allows bacterial expansion of colonization.•Additional hydrolases produced by biofilm bacteria also play a role in l |
doi_str_mv | 10.1016/j.ibiod.2020.105121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2480001089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0964830520310520</els_id><sourcerecordid>2480001089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-a2f105f2ecea28b48c57071645cb26e2117e1c3701a22ec2718719cbea2f08aa3</originalsourceid><addsrcrecordid>eNp9kEtPAyEUhYnRxFr9BW5IXE8F5kUXLmrjK2miC10TBu60TKZQYcZk3PjXZTquXQGH71w4B6FrShaU0OK2WZjKOL1ghI1KThk9QTPKy2USFX6KZmRZZAlPSX6OLkJoCCE053SGftauddZ8y844i6XVWMPWSz2dXY0Prh16D91OWsDKRd1uA64G_Bag127vrAz44F0HW7DxwrjatPuAzVHdR10f6R5Wx_Fxc493g_aulQHCJTqrZRvg6m-do4_Hh_f1c7J5fXpZrzaJSsuiSySrY6yagQLJeJVxlZekpEWWq4oVwCgtgUaUUMkixMqYnS5VFemacCnTObqZ5sZPffYQOtG43tv4pGAZH-sgfBmpdKKUdyF4qMXBm730g6BEjE2LRhybFmPTYmo6uu4mF8QAXwa8CMqAVaCNB9UJ7cy__l-PTonS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2480001089</pqid></control><display><type>article</type><title>Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases</title><source>Access via ScienceDirect (Elsevier)</source><creator>Nadeau, Lloyd J. ; Barlow, Daniel E. ; Hung, Chia-Suei ; Biffinger, Justin C. ; Crouch, Audra L. ; Hollomon, Jeffrey M. ; Ecker, Christopher D. ; Russell, John N. ; Crookes-Goodson, Wendy J.</creator><creatorcontrib>Nadeau, Lloyd J. ; Barlow, Daniel E. ; Hung, Chia-Suei ; Biffinger, Justin C. ; Crouch, Audra L. ; Hollomon, Jeffrey M. ; Ecker, Christopher D. ; Russell, John N. ; Crookes-Goodson, Wendy J.</creatorcontrib><description>The ability of bacteria and fungi to degrade polymeric substrates is often assessed in liquid-based assays conducted by exposing polymers to planktonic cells, or cell-free supernatants or enzymes generated from them. These assessments miss the opportunity to specifically examine the role of biofilm formation and physiology in degradative processes. In a previous study, we examined the ability of cell-free supernatants from wildtype and hydrolase-deficient Pseudomonas protegens Pf-5 strains to degrade a commercial polyester polyurethane (PU). In this study, we developed the methodology to conduct spatial-temporal analysis of both biofilm colonization and degradation of polyester PU coatings using the same strains. Wild-type Pf-5 grew as confluent biofilms that produced tendrils containing viable cells; in contrast, Pf-5ΔpueAB, a mutant lacking PueA and PueB hydrolases, colonized the PU only by growing as a confluent biofilm but lacked tendril expansion. Degradation of PU by the wild-type hydrolases may alter the substrata, facilitating colonization by the biofilm. Chemical analysis by in situ Fourier transform infrared (FTIR) and Raman spectroscopies revealed the polyester block of the PU was preferentially degraded to varying degrees by the wild-type Pf-5 and mutant biofilms, and showed degradation due to PueB that was undetectable in liquid-based assays. Raman spectroscopy analysis of biofilms of Pf-5ΔpueAB grown on PU revealed a detectable, but the lowest, level of PU degradation relative to other strains. Degradation of PU by this mutant had previously been undetectable and this study revealed the existence of biofilm-associated hydrolytic mechanisms other than those driven by PueA and PueB. Taken together, our data suggest that both PueA and PueB hydrolases play a role in the colonization and degradation of a model polyester PU by P. protegens biofilms. This study demonstrates the importance of using biofilm-based assays to identify mechanisms of microbiologically-influenced degradation.
•PueA and PueB hydrolase activities mediate ester-bond cleavage during PU degradation by biofilm bacteria of P. protegens.•Air-surface biofilms permit non-invasive analysis of PU degradation.•Secreted PueA and PueB hydrolases facilitate motility of bacteria over solid PU surfaces.•Degradation of PU by Pseudomonas hydrolases creates tendril structures and allows bacterial expansion of colonization.•Additional hydrolases produced by biofilm bacteria also play a role in local PU degradation, but not tendril formation.</description><identifier>ISSN: 0964-8305</identifier><identifier>EISSN: 1879-0208</identifier><identifier>DOI: 10.1016/j.ibiod.2020.105121</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Air-surface biofilm ; Assaying ; Biodegradation ; Biofilms ; Carbonyl ; Chemical analysis ; Coatings ; Colonization ; Degradation ; Fourier analysis ; Fourier transforms ; Fungi ; Hydrolase ; Hydrologic data ; Infrared analysis ; Motility ; Mutants ; Planktonic cells ; Polyesters ; Polymers ; Polyurethane ; Polyurethane resins ; Pseudomonas ; Pseudomonas protegens ; Pseudomonas protegens Pf-5 ; Raman spectroscopy ; Spatial analysis ; Strains (organisms) ; Substrates ; Tendril</subject><ispartof>International biodeterioration & biodegradation, 2021-01, Vol.156, p.105121, Article 105121</ispartof><rights>2020</rights><rights>Copyright Elsevier BV Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-a2f105f2ecea28b48c57071645cb26e2117e1c3701a22ec2718719cbea2f08aa3</citedby><cites>FETCH-LOGICAL-c376t-a2f105f2ecea28b48c57071645cb26e2117e1c3701a22ec2718719cbea2f08aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ibiod.2020.105121$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Nadeau, Lloyd J.</creatorcontrib><creatorcontrib>Barlow, Daniel E.</creatorcontrib><creatorcontrib>Hung, Chia-Suei</creatorcontrib><creatorcontrib>Biffinger, Justin C.</creatorcontrib><creatorcontrib>Crouch, Audra L.</creatorcontrib><creatorcontrib>Hollomon, Jeffrey M.</creatorcontrib><creatorcontrib>Ecker, Christopher D.</creatorcontrib><creatorcontrib>Russell, John N.</creatorcontrib><creatorcontrib>Crookes-Goodson, Wendy J.</creatorcontrib><title>Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases</title><title>International biodeterioration & biodegradation</title><description>The ability of bacteria and fungi to degrade polymeric substrates is often assessed in liquid-based assays conducted by exposing polymers to planktonic cells, or cell-free supernatants or enzymes generated from them. These assessments miss the opportunity to specifically examine the role of biofilm formation and physiology in degradative processes. In a previous study, we examined the ability of cell-free supernatants from wildtype and hydrolase-deficient Pseudomonas protegens Pf-5 strains to degrade a commercial polyester polyurethane (PU). In this study, we developed the methodology to conduct spatial-temporal analysis of both biofilm colonization and degradation of polyester PU coatings using the same strains. Wild-type Pf-5 grew as confluent biofilms that produced tendrils containing viable cells; in contrast, Pf-5ΔpueAB, a mutant lacking PueA and PueB hydrolases, colonized the PU only by growing as a confluent biofilm but lacked tendril expansion. Degradation of PU by the wild-type hydrolases may alter the substrata, facilitating colonization by the biofilm. Chemical analysis by in situ Fourier transform infrared (FTIR) and Raman spectroscopies revealed the polyester block of the PU was preferentially degraded to varying degrees by the wild-type Pf-5 and mutant biofilms, and showed degradation due to PueB that was undetectable in liquid-based assays. Raman spectroscopy analysis of biofilms of Pf-5ΔpueAB grown on PU revealed a detectable, but the lowest, level of PU degradation relative to other strains. Degradation of PU by this mutant had previously been undetectable and this study revealed the existence of biofilm-associated hydrolytic mechanisms other than those driven by PueA and PueB. Taken together, our data suggest that both PueA and PueB hydrolases play a role in the colonization and degradation of a model polyester PU by P. protegens biofilms. This study demonstrates the importance of using biofilm-based assays to identify mechanisms of microbiologically-influenced degradation.
•PueA and PueB hydrolase activities mediate ester-bond cleavage during PU degradation by biofilm bacteria of P. protegens.•Air-surface biofilms permit non-invasive analysis of PU degradation.•Secreted PueA and PueB hydrolases facilitate motility of bacteria over solid PU surfaces.•Degradation of PU by Pseudomonas hydrolases creates tendril structures and allows bacterial expansion of colonization.•Additional hydrolases produced by biofilm bacteria also play a role in local PU degradation, but not tendril formation.</description><subject>Air-surface biofilm</subject><subject>Assaying</subject><subject>Biodegradation</subject><subject>Biofilms</subject><subject>Carbonyl</subject><subject>Chemical analysis</subject><subject>Coatings</subject><subject>Colonization</subject><subject>Degradation</subject><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Fungi</subject><subject>Hydrolase</subject><subject>Hydrologic data</subject><subject>Infrared analysis</subject><subject>Motility</subject><subject>Mutants</subject><subject>Planktonic cells</subject><subject>Polyesters</subject><subject>Polymers</subject><subject>Polyurethane</subject><subject>Polyurethane resins</subject><subject>Pseudomonas</subject><subject>Pseudomonas protegens</subject><subject>Pseudomonas protegens Pf-5</subject><subject>Raman spectroscopy</subject><subject>Spatial analysis</subject><subject>Strains (organisms)</subject><subject>Substrates</subject><subject>Tendril</subject><issn>0964-8305</issn><issn>1879-0208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPAyEUhYnRxFr9BW5IXE8F5kUXLmrjK2miC10TBu60TKZQYcZk3PjXZTquXQGH71w4B6FrShaU0OK2WZjKOL1ghI1KThk9QTPKy2USFX6KZmRZZAlPSX6OLkJoCCE053SGftauddZ8y844i6XVWMPWSz2dXY0Prh16D91OWsDKRd1uA64G_Bag127vrAz44F0HW7DxwrjatPuAzVHdR10f6R5Wx_Fxc493g_aulQHCJTqrZRvg6m-do4_Hh_f1c7J5fXpZrzaJSsuiSySrY6yagQLJeJVxlZekpEWWq4oVwCgtgUaUUMkixMqYnS5VFemacCnTObqZ5sZPffYQOtG43tv4pGAZH-sgfBmpdKKUdyF4qMXBm730g6BEjE2LRhybFmPTYmo6uu4mF8QAXwa8CMqAVaCNB9UJ7cy__l-PTonS</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Nadeau, Lloyd J.</creator><creator>Barlow, Daniel E.</creator><creator>Hung, Chia-Suei</creator><creator>Biffinger, Justin C.</creator><creator>Crouch, Audra L.</creator><creator>Hollomon, Jeffrey M.</creator><creator>Ecker, Christopher D.</creator><creator>Russell, John N.</creator><creator>Crookes-Goodson, Wendy J.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>202101</creationdate><title>Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases</title><author>Nadeau, Lloyd J. ; Barlow, Daniel E. ; Hung, Chia-Suei ; Biffinger, Justin C. ; Crouch, Audra L. ; Hollomon, Jeffrey M. ; Ecker, Christopher D. ; Russell, John N. ; Crookes-Goodson, Wendy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-a2f105f2ecea28b48c57071645cb26e2117e1c3701a22ec2718719cbea2f08aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air-surface biofilm</topic><topic>Assaying</topic><topic>Biodegradation</topic><topic>Biofilms</topic><topic>Carbonyl</topic><topic>Chemical analysis</topic><topic>Coatings</topic><topic>Colonization</topic><topic>Degradation</topic><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Fungi</topic><topic>Hydrolase</topic><topic>Hydrologic data</topic><topic>Infrared analysis</topic><topic>Motility</topic><topic>Mutants</topic><topic>Planktonic cells</topic><topic>Polyesters</topic><topic>Polymers</topic><topic>Polyurethane</topic><topic>Polyurethane resins</topic><topic>Pseudomonas</topic><topic>Pseudomonas protegens</topic><topic>Pseudomonas protegens Pf-5</topic><topic>Raman spectroscopy</topic><topic>Spatial analysis</topic><topic>Strains (organisms)</topic><topic>Substrates</topic><topic>Tendril</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadeau, Lloyd J.</creatorcontrib><creatorcontrib>Barlow, Daniel E.</creatorcontrib><creatorcontrib>Hung, Chia-Suei</creatorcontrib><creatorcontrib>Biffinger, Justin C.</creatorcontrib><creatorcontrib>Crouch, Audra L.</creatorcontrib><creatorcontrib>Hollomon, Jeffrey M.</creatorcontrib><creatorcontrib>Ecker, Christopher D.</creatorcontrib><creatorcontrib>Russell, John N.</creatorcontrib><creatorcontrib>Crookes-Goodson, Wendy J.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International biodeterioration & biodegradation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadeau, Lloyd J.</au><au>Barlow, Daniel E.</au><au>Hung, Chia-Suei</au><au>Biffinger, Justin C.</au><au>Crouch, Audra L.</au><au>Hollomon, Jeffrey M.</au><au>Ecker, Christopher D.</au><au>Russell, John N.</au><au>Crookes-Goodson, Wendy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases</atitle><jtitle>International biodeterioration & biodegradation</jtitle><date>2021-01</date><risdate>2021</risdate><volume>156</volume><spage>105121</spage><pages>105121-</pages><artnum>105121</artnum><issn>0964-8305</issn><eissn>1879-0208</eissn><abstract>The ability of bacteria and fungi to degrade polymeric substrates is often assessed in liquid-based assays conducted by exposing polymers to planktonic cells, or cell-free supernatants or enzymes generated from them. These assessments miss the opportunity to specifically examine the role of biofilm formation and physiology in degradative processes. In a previous study, we examined the ability of cell-free supernatants from wildtype and hydrolase-deficient Pseudomonas protegens Pf-5 strains to degrade a commercial polyester polyurethane (PU). In this study, we developed the methodology to conduct spatial-temporal analysis of both biofilm colonization and degradation of polyester PU coatings using the same strains. Wild-type Pf-5 grew as confluent biofilms that produced tendrils containing viable cells; in contrast, Pf-5ΔpueAB, a mutant lacking PueA and PueB hydrolases, colonized the PU only by growing as a confluent biofilm but lacked tendril expansion. Degradation of PU by the wild-type hydrolases may alter the substrata, facilitating colonization by the biofilm. Chemical analysis by in situ Fourier transform infrared (FTIR) and Raman spectroscopies revealed the polyester block of the PU was preferentially degraded to varying degrees by the wild-type Pf-5 and mutant biofilms, and showed degradation due to PueB that was undetectable in liquid-based assays. Raman spectroscopy analysis of biofilms of Pf-5ΔpueAB grown on PU revealed a detectable, but the lowest, level of PU degradation relative to other strains. Degradation of PU by this mutant had previously been undetectable and this study revealed the existence of biofilm-associated hydrolytic mechanisms other than those driven by PueA and PueB. Taken together, our data suggest that both PueA and PueB hydrolases play a role in the colonization and degradation of a model polyester PU by P. protegens biofilms. This study demonstrates the importance of using biofilm-based assays to identify mechanisms of microbiologically-influenced degradation.
•PueA and PueB hydrolase activities mediate ester-bond cleavage during PU degradation by biofilm bacteria of P. protegens.•Air-surface biofilms permit non-invasive analysis of PU degradation.•Secreted PueA and PueB hydrolases facilitate motility of bacteria over solid PU surfaces.•Degradation of PU by Pseudomonas hydrolases creates tendril structures and allows bacterial expansion of colonization.•Additional hydrolases produced by biofilm bacteria also play a role in local PU degradation, but not tendril formation.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ibiod.2020.105121</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0964-8305 |
ispartof | International biodeterioration & biodegradation, 2021-01, Vol.156, p.105121, Article 105121 |
issn | 0964-8305 1879-0208 |
language | eng |
recordid | cdi_proquest_journals_2480001089 |
source | Access via ScienceDirect (Elsevier) |
subjects | Air-surface biofilm Assaying Biodegradation Biofilms Carbonyl Chemical analysis Coatings Colonization Degradation Fourier analysis Fourier transforms Fungi Hydrolase Hydrologic data Infrared analysis Motility Mutants Planktonic cells Polyesters Polymers Polyurethane Polyurethane resins Pseudomonas Pseudomonas protegens Pseudomonas protegens Pf-5 Raman spectroscopy Spatial analysis Strains (organisms) Substrates Tendril |
title | Colonization and degradation of polyurethane coatings by Pseudomonas protegens biofilms is promoted by PueA and PueB hydrolases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colonization%20and%20degradation%20of%20polyurethane%20coatings%20by%20Pseudomonas%20protegens%20biofilms%20is%20promoted%20by%20PueA%20and%20PueB%20hydrolases&rft.jtitle=International%20biodeterioration%20&%20biodegradation&rft.au=Nadeau,%20Lloyd%20J.&rft.date=2021-01&rft.volume=156&rft.spage=105121&rft.pages=105121-&rft.artnum=105121&rft.issn=0964-8305&rft.eissn=1879-0208&rft_id=info:doi/10.1016/j.ibiod.2020.105121&rft_dat=%3Cproquest_cross%3E2480001089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2480001089&rft_id=info:pmid/&rft_els_id=S0964830520310520&rfr_iscdi=true |