On Frobenius and separable Galois cowreaths

We show that a Galois cowreath ( A ,  X ) in a monoidal category C is Frobenius if and only if the subalgebra of coinvariants A co ( X ) ↪ A is a Frobenius algebra extension in C . Then we give necessary and sufficient conditions for A co ( X ) ↪ A to be separable, and prove that a Frobenius Galois...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2021-02, Vol.297 (1-2), p.25-57
Hauptverfasser: Bulacu, D., Torrecillas, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue 1-2
container_start_page 25
container_title Mathematische Zeitschrift
container_volume 297
creator Bulacu, D.
Torrecillas, B.
description We show that a Galois cowreath ( A ,  X ) in a monoidal category C is Frobenius if and only if the subalgebra of coinvariants A co ( X ) ↪ A is a Frobenius algebra extension in C . Then we give necessary and sufficient conditions for A co ( X ) ↪ A to be separable, and prove that a Frobenius Galois cowreath is separable if and only if it admits a total integral.
doi_str_mv 10.1007/s00209-020-02495-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479999734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479999734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-121ac09c6390d381e293563599297bdd84cdb5558244da59fb215b19a7328edf3</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaJgHf0BVwWXEs1zkruUwRmFgdnoOuRV7VDbMWkR_95oBXdeuOcuzuPCQeiSkhtKiLrNhDACuEBZARLrI1RRwRmmmvFjVBVeYqmVOEVnOe8JKaQSFbre9fU6DS727ZRr24c6x4NN1nWx3thuaHPth48U7fiaz9FJY7scL37vAj2v759WD3i72zyu7rbYcwojpoxaT8AvOZDANY0MuFxyCcBAuRC08MFJKTUTIlgJjWNUOgpWcaZjaPgCXc25hzS8TzGPZj9MqS8vDRMKyiguiorNKp-GnFNszCG1bzZ9GkrMdylmLsUUMD-lGF1MfDblIu5fYvqL_sf1BaYaYjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479999734</pqid></control><display><type>article</type><title>On Frobenius and separable Galois cowreaths</title><source>Springer Nature - Complete Springer Journals</source><creator>Bulacu, D. ; Torrecillas, B.</creator><creatorcontrib>Bulacu, D. ; Torrecillas, B.</creatorcontrib><description>We show that a Galois cowreath ( A ,  X ) in a monoidal category C is Frobenius if and only if the subalgebra of coinvariants A co ( X ) ↪ A is a Frobenius algebra extension in C . Then we give necessary and sufficient conditions for A co ( X ) ↪ A to be separable, and prove that a Frobenius Galois cowreath is separable if and only if it admits a total integral.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-020-02495-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematische Zeitschrift, 2021-02, Vol.297 (1-2), p.25-57</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-121ac09c6390d381e293563599297bdd84cdb5558244da59fb215b19a7328edf3</citedby><cites>FETCH-LOGICAL-c319t-121ac09c6390d381e293563599297bdd84cdb5558244da59fb215b19a7328edf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-020-02495-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-020-02495-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bulacu, D.</creatorcontrib><creatorcontrib>Torrecillas, B.</creatorcontrib><title>On Frobenius and separable Galois cowreaths</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We show that a Galois cowreath ( A ,  X ) in a monoidal category C is Frobenius if and only if the subalgebra of coinvariants A co ( X ) ↪ A is a Frobenius algebra extension in C . Then we give necessary and sufficient conditions for A co ( X ) ↪ A to be separable, and prove that a Frobenius Galois cowreath is separable if and only if it admits a total integral.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaJgHf0BVwWXEs1zkruUwRmFgdnoOuRV7VDbMWkR_95oBXdeuOcuzuPCQeiSkhtKiLrNhDACuEBZARLrI1RRwRmmmvFjVBVeYqmVOEVnOe8JKaQSFbre9fU6DS727ZRr24c6x4NN1nWx3thuaHPth48U7fiaz9FJY7scL37vAj2v759WD3i72zyu7rbYcwojpoxaT8AvOZDANY0MuFxyCcBAuRC08MFJKTUTIlgJjWNUOgpWcaZjaPgCXc25hzS8TzGPZj9MqS8vDRMKyiguiorNKp-GnFNszCG1bzZ9GkrMdylmLsUUMD-lGF1MfDblIu5fYvqL_sf1BaYaYjQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Bulacu, D.</creator><creator>Torrecillas, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210201</creationdate><title>On Frobenius and separable Galois cowreaths</title><author>Bulacu, D. ; Torrecillas, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-121ac09c6390d381e293563599297bdd84cdb5558244da59fb215b19a7328edf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bulacu, D.</creatorcontrib><creatorcontrib>Torrecillas, B.</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bulacu, D.</au><au>Torrecillas, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Frobenius and separable Galois cowreaths</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>297</volume><issue>1-2</issue><spage>25</spage><epage>57</epage><pages>25-57</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We show that a Galois cowreath ( A ,  X ) in a monoidal category C is Frobenius if and only if the subalgebra of coinvariants A co ( X ) ↪ A is a Frobenius algebra extension in C . Then we give necessary and sufficient conditions for A co ( X ) ↪ A to be separable, and prove that a Frobenius Galois cowreath is separable if and only if it admits a total integral.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-020-02495-8</doi><tpages>33</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2021-02, Vol.297 (1-2), p.25-57
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_2479999734
source Springer Nature - Complete Springer Journals
subjects Mathematics
Mathematics and Statistics
title On Frobenius and separable Galois cowreaths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Frobenius%20and%20separable%20Galois%20cowreaths&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Bulacu,%20D.&rft.date=2021-02-01&rft.volume=297&rft.issue=1-2&rft.spage=25&rft.epage=57&rft.pages=25-57&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-020-02495-8&rft_dat=%3Cproquest_cross%3E2479999734%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479999734&rft_id=info:pmid/&rfr_iscdi=true