An Exact Quantum Algorithm for the 2-Junta Problem

This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function f  : {0, 1} n  → {0, 1} that depends on only 2 out of n variables, the dependent variables are obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of theoretical physics 2021, Vol.60 (1), p.80-91
1. Verfasser: Chen, Chien-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 80
container_title International journal of theoretical physics
container_volume 60
creator Chen, Chien-Yuan
description This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function f  : {0, 1} n  → {0, 1} that depends on only 2 out of n variables, the dependent variables are obtained by evaluating the function 4 n times in the worst-case. However, the proposed quantum algorithm only requires O ( log 2 n ) function operations in the worst-case. Moreover, the algorithm requires an average of 5.3 function operations at the most when n  ≥ 8.
doi_str_mv 10.1007/s10773-020-04662-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479999676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479999676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d36cee3d3a68690760dd84cb271cfebec2fd0ed644b3dcf27b08846203faec393</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpymWRmWUq1SkEFXYdMLr3QmalJBvTtnTqCO8_mLM73_wc-hK4p3FIAdZcoKMUJMCAgpGSEn6AJLRQjVaGKUzSB40kpUZ6ji5R2AFCBKCeIzVq8-DQ249fetLlv8Gy_7uI2bxocuojzxmNGnvo2G_wSu3rvm0t0Fsw--avfPUXv94u3-ZKsnh8e57MVsZxWmTgurffccSNLWYGS4FwpbM0UtcHX3rLgwDspRM2dDUzVUJZCMuDBeMsrPkU3Y-8hdh-9T1nvuj62w0vNhKqGkUoOFBspG7uUog_6ELeNiV-agj660aMbPQjQP240H0J8DKUBbtc-_lX_k_oGZRRlpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479999676</pqid></control><display><type>article</type><title>An Exact Quantum Algorithm for the 2-Junta Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Chien-Yuan</creator><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><description>This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function f  : {0, 1} n  → {0, 1} that depends on only 2 out of n variables, the dependent variables are obtained by evaluating the function 4 n times in the worst-case. However, the proposed quantum algorithm only requires O ( log 2 n ) function operations in the worst-case. Moreover, the algorithm requires an average of 5.3 function operations at the most when n  ≥ 8.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-020-04662-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Boolean algebra ; Boolean functions ; Circuits ; Dependent variables ; Elementary Particles ; Machine learning ; Mathematical analysis ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2021, Vol.60 (1), p.80-91</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d36cee3d3a68690760dd84cb271cfebec2fd0ed644b3dcf27b08846203faec393</citedby><cites>FETCH-LOGICAL-c319t-d36cee3d3a68690760dd84cb271cfebec2fd0ed644b3dcf27b08846203faec393</cites><orcidid>0000-0002-4162-9695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-020-04662-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-020-04662-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><title>An Exact Quantum Algorithm for the 2-Junta Problem</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function f  : {0, 1} n  → {0, 1} that depends on only 2 out of n variables, the dependent variables are obtained by evaluating the function 4 n times in the worst-case. However, the proposed quantum algorithm only requires O ( log 2 n ) function operations in the worst-case. Moreover, the algorithm requires an average of 5.3 function operations at the most when n  ≥ 8.</description><subject>Algorithms</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Circuits</subject><subject>Dependent variables</subject><subject>Elementary Particles</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpymWRmWUq1SkEFXYdMLr3QmalJBvTtnTqCO8_mLM73_wc-hK4p3FIAdZcoKMUJMCAgpGSEn6AJLRQjVaGKUzSB40kpUZ6ji5R2AFCBKCeIzVq8-DQ249fetLlv8Gy_7uI2bxocuojzxmNGnvo2G_wSu3rvm0t0Fsw--avfPUXv94u3-ZKsnh8e57MVsZxWmTgurffccSNLWYGS4FwpbM0UtcHX3rLgwDspRM2dDUzVUJZCMuDBeMsrPkU3Y-8hdh-9T1nvuj62w0vNhKqGkUoOFBspG7uUog_6ELeNiV-agj660aMbPQjQP240H0J8DKUBbtc-_lX_k_oGZRRlpg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chen, Chien-Yuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4162-9695</orcidid></search><sort><creationdate>2021</creationdate><title>An Exact Quantum Algorithm for the 2-Junta Problem</title><author>Chen, Chien-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d36cee3d3a68690760dd84cb271cfebec2fd0ed644b3dcf27b08846203faec393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Circuits</topic><topic>Dependent variables</topic><topic>Elementary Particles</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chien-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exact Quantum Algorithm for the 2-Junta Problem</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2021</date><risdate>2021</risdate><volume>60</volume><issue>1</issue><spage>80</spage><epage>91</epage><pages>80-91</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function f  : {0, 1} n  → {0, 1} that depends on only 2 out of n variables, the dependent variables are obtained by evaluating the function 4 n times in the worst-case. However, the proposed quantum algorithm only requires O ( log 2 n ) function operations in the worst-case. Moreover, the algorithm requires an average of 5.3 function operations at the most when n  ≥ 8.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-020-04662-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4162-9695</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7748
ispartof International journal of theoretical physics, 2021, Vol.60 (1), p.80-91
issn 0020-7748
1572-9575
language eng
recordid cdi_proquest_journals_2479999676
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Boolean algebra
Boolean functions
Circuits
Dependent variables
Elementary Particles
Machine learning
Mathematical analysis
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Theoretical
title An Exact Quantum Algorithm for the 2-Junta Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exact%20Quantum%20Algorithm%20for%20the%202-Junta%20Problem&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Chen,%20Chien-Yuan&rft.date=2021&rft.volume=60&rft.issue=1&rft.spage=80&rft.epage=91&rft.pages=80-91&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-020-04662-3&rft_dat=%3Cproquest_cross%3E2479999676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479999676&rft_id=info:pmid/&rfr_iscdi=true