An Exact Quantum Algorithm for the 2-Junta Problem
This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function f : {0, 1} n → {0, 1} that depends on only 2 out of n variables, the dependent variables are obta...
Gespeichert in:
Veröffentlicht in: | International journal of theoretical physics 2021, Vol.60 (1), p.80-91 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 1 |
container_start_page | 80 |
container_title | International journal of theoretical physics |
container_volume | 60 |
creator | Chen, Chien-Yuan |
description | This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function
f
: {0, 1}
n
→ {0, 1} that depends on only 2 out of
n
variables, the dependent variables are obtained by evaluating the function 4
n
times in the worst-case. However, the proposed quantum algorithm only requires
O
(
log
2
n
) function operations in the worst-case. Moreover, the algorithm requires an average of 5.3 function operations at the most when
n
≥ 8. |
doi_str_mv | 10.1007/s10773-020-04662-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479999676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479999676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d36cee3d3a68690760dd84cb271cfebec2fd0ed644b3dcf27b08846203faec393</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpymWRmWUq1SkEFXYdMLr3QmalJBvTtnTqCO8_mLM73_wc-hK4p3FIAdZcoKMUJMCAgpGSEn6AJLRQjVaGKUzSB40kpUZ6ji5R2AFCBKCeIzVq8-DQ249fetLlv8Gy_7uI2bxocuojzxmNGnvo2G_wSu3rvm0t0Fsw--avfPUXv94u3-ZKsnh8e57MVsZxWmTgurffccSNLWYGS4FwpbM0UtcHX3rLgwDspRM2dDUzVUJZCMuDBeMsrPkU3Y-8hdh-9T1nvuj62w0vNhKqGkUoOFBspG7uUog_6ELeNiV-agj660aMbPQjQP240H0J8DKUBbtc-_lX_k_oGZRRlpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479999676</pqid></control><display><type>article</type><title>An Exact Quantum Algorithm for the 2-Junta Problem</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Chien-Yuan</creator><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><description>This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function
f
: {0, 1}
n
→ {0, 1} that depends on only 2 out of
n
variables, the dependent variables are obtained by evaluating the function 4
n
times in the worst-case. However, the proposed quantum algorithm only requires
O
(
log
2
n
) function operations in the worst-case. Moreover, the algorithm requires an average of 5.3 function operations at the most when
n
≥ 8.</description><identifier>ISSN: 0020-7748</identifier><identifier>EISSN: 1572-9575</identifier><identifier>DOI: 10.1007/s10773-020-04662-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Boolean algebra ; Boolean functions ; Circuits ; Dependent variables ; Elementary Particles ; Machine learning ; Mathematical analysis ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Theoretical</subject><ispartof>International journal of theoretical physics, 2021, Vol.60 (1), p.80-91</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d36cee3d3a68690760dd84cb271cfebec2fd0ed644b3dcf27b08846203faec393</citedby><cites>FETCH-LOGICAL-c319t-d36cee3d3a68690760dd84cb271cfebec2fd0ed644b3dcf27b08846203faec393</cites><orcidid>0000-0002-4162-9695</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10773-020-04662-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10773-020-04662-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><title>An Exact Quantum Algorithm for the 2-Junta Problem</title><title>International journal of theoretical physics</title><addtitle>Int J Theor Phys</addtitle><description>This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function
f
: {0, 1}
n
→ {0, 1} that depends on only 2 out of
n
variables, the dependent variables are obtained by evaluating the function 4
n
times in the worst-case. However, the proposed quantum algorithm only requires
O
(
log
2
n
) function operations in the worst-case. Moreover, the algorithm requires an average of 5.3 function operations at the most when
n
≥ 8.</description><subject>Algorithms</subject><subject>Boolean algebra</subject><subject>Boolean functions</subject><subject>Circuits</subject><subject>Dependent variables</subject><subject>Elementary Particles</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Theoretical</subject><issn>0020-7748</issn><issn>1572-9575</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsv4CrgOnpymWRmWUq1SkEFXYdMLr3QmalJBvTtnTqCO8_mLM73_wc-hK4p3FIAdZcoKMUJMCAgpGSEn6AJLRQjVaGKUzSB40kpUZ6ji5R2AFCBKCeIzVq8-DQ249fetLlv8Gy_7uI2bxocuojzxmNGnvo2G_wSu3rvm0t0Fsw--avfPUXv94u3-ZKsnh8e57MVsZxWmTgurffccSNLWYGS4FwpbM0UtcHX3rLgwDspRM2dDUzVUJZCMuDBeMsrPkU3Y-8hdh-9T1nvuj62w0vNhKqGkUoOFBspG7uUog_6ELeNiV-agj660aMbPQjQP240H0J8DKUBbtc-_lX_k_oGZRRlpg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chen, Chien-Yuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4162-9695</orcidid></search><sort><creationdate>2021</creationdate><title>An Exact Quantum Algorithm for the 2-Junta Problem</title><author>Chen, Chien-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d36cee3d3a68690760dd84cb271cfebec2fd0ed644b3dcf27b08846203faec393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Boolean algebra</topic><topic>Boolean functions</topic><topic>Circuits</topic><topic>Dependent variables</topic><topic>Elementary Particles</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chien-Yuan</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chien-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exact Quantum Algorithm for the 2-Junta Problem</atitle><jtitle>International journal of theoretical physics</jtitle><stitle>Int J Theor Phys</stitle><date>2021</date><risdate>2021</risdate><volume>60</volume><issue>1</issue><spage>80</spage><epage>91</epage><pages>80-91</pages><issn>0020-7748</issn><eissn>1572-9575</eissn><abstract>This paper proposes a novel quantum learning algorithm based on Bernstein and Vazirani’s quantum circuit to find the dependent variables of the 2-junta problem. Typically, for a given Boolean function
f
: {0, 1}
n
→ {0, 1} that depends on only 2 out of
n
variables, the dependent variables are obtained by evaluating the function 4
n
times in the worst-case. However, the proposed quantum algorithm only requires
O
(
log
2
n
) function operations in the worst-case. Moreover, the algorithm requires an average of 5.3 function operations at the most when
n
≥ 8.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10773-020-04662-3</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4162-9695</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7748 |
ispartof | International journal of theoretical physics, 2021, Vol.60 (1), p.80-91 |
issn | 0020-7748 1572-9575 |
language | eng |
recordid | cdi_proquest_journals_2479999676 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Boolean algebra Boolean functions Circuits Dependent variables Elementary Particles Machine learning Mathematical analysis Mathematical and Computational Physics Physics Physics and Astronomy Quantum Field Theory Quantum Physics Theoretical |
title | An Exact Quantum Algorithm for the 2-Junta Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A15%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exact%20Quantum%20Algorithm%20for%20the%202-Junta%20Problem&rft.jtitle=International%20journal%20of%20theoretical%20physics&rft.au=Chen,%20Chien-Yuan&rft.date=2021&rft.volume=60&rft.issue=1&rft.spage=80&rft.epage=91&rft.pages=80-91&rft.issn=0020-7748&rft.eissn=1572-9575&rft_id=info:doi/10.1007/s10773-020-04662-3&rft_dat=%3Cproquest_cross%3E2479999676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479999676&rft_id=info:pmid/&rfr_iscdi=true |