Toward the Reverse Decomposition of Unipotents. II. The Relative Case

Recently, Raimund Preusser displayed very short polynomial expressions of elementary generators in classical groups over an arbitrary commutative ring as products of conjugates of an arbitrary matrix and its inverse by absolute elementary matrices. In particular, this provides very short proofs for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2021-02, Vol.252 (6), p.749-760
1. Verfasser: Vavilov, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 6
container_start_page 749
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 252
creator Vavilov, N.
description Recently, Raimund Preusser displayed very short polynomial expressions of elementary generators in classical groups over an arbitrary commutative ring as products of conjugates of an arbitrary matrix and its inverse by absolute elementary matrices. In particular, this provides very short proofs for description of normal subgroups. In 2018, the author discussed various generalizations of these results to exceptional groups, specifically those of types E 6 and E 7 . Here, a further variation of Preusser’s wonderful idea is presented. Namely, in the case of GL( n , R ), n ≥ 4, similar expressions of elementary transvections as conjugates of g ∈ GL( n , R ) and g −1 by relative elementary matrices x ∈ E ( n , J ) and then x ∈ E ( n , R , J ), for an ideal J ⊴ R , are obtained. Again, in particular, this allows to give very short proofs for the description of subgroups normalized by E ( n , J ) or E ( n , R , J ), and thus also of subnormal subgroups in GL( n , R ).
doi_str_mv 10.1007/s10958-021-05195-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2479999630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A651497285</galeid><sourcerecordid>A651497285</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3248-39b03b22132a28760911383cc80e0edba0bc357a250a60fac53260393457529c3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhpeSQpO0L9DTQk89yBlpVivpGNy0MQQKqXMWsjzrKtgrV5KT9O2rxIFgMNUcJIbvmwH9TfOZw4QDqIvMwUjNQHAGkhvJ9LvmlEuFTCsjT-oblGCIqvvQnOV8D1XqNZ42V_P46NKyLb-pvaUHSpnab-TjZhtzKCGObRzauzFsY6Gx5Ek7m03a-Qu8diU8UDt1mT427we3zvTp9T5v7r5fzafX7Obnj9n08oZ5FJ1maBaACyE4Cie06sFwjhq910BAy4WDhUepnJDgehiclyh6QIOdVFIYj-fNl_3cbYp_dpSLvY-7NNaVVnTK1NMjvFErtyYbxiGW5PwmZG8ve8k7o4SWlWJHqBWNlNw6jjSE2j7gJ0f4WkvaBH9U-HogVKbQU1m5Xc529uv2kBV71qeYc6LBblPYuPTXcrDPCdt9wrYmbF8StrpKuJdyhccVpbff-I_1D0aNow4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479999630</pqid></control><display><type>article</type><title>Toward the Reverse Decomposition of Unipotents. II. The Relative Case</title><source>Springer Nature - Complete Springer Journals</source><creator>Vavilov, N.</creator><creatorcontrib>Vavilov, N.</creatorcontrib><description>Recently, Raimund Preusser displayed very short polynomial expressions of elementary generators in classical groups over an arbitrary commutative ring as products of conjugates of an arbitrary matrix and its inverse by absolute elementary matrices. In particular, this provides very short proofs for description of normal subgroups. In 2018, the author discussed various generalizations of these results to exceptional groups, specifically those of types E 6 and E 7 . Here, a further variation of Preusser’s wonderful idea is presented. Namely, in the case of GL( n , R ), n ≥ 4, similar expressions of elementary transvections as conjugates of g ∈ GL( n , R ) and g −1 by relative elementary matrices x ∈ E ( n , J ) and then x ∈ E ( n , R , J ), for an ideal J ⊴ R , are obtained. Again, in particular, this allows to give very short proofs for the description of subgroups normalized by E ( n , J ) or E ( n , R , J ), and thus also of subnormal subgroups in GL( n , R ).</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-021-05195-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Commutativity ; Conjugates ; Mathematics ; Mathematics and Statistics ; Polynomials ; Rings (mathematics) ; Subgroups</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2021-02, Vol.252 (6), p.749-760</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3248-39b03b22132a28760911383cc80e0edba0bc357a250a60fac53260393457529c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-021-05195-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-021-05195-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Vavilov, N.</creatorcontrib><title>Toward the Reverse Decomposition of Unipotents. II. The Relative Case</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Recently, Raimund Preusser displayed very short polynomial expressions of elementary generators in classical groups over an arbitrary commutative ring as products of conjugates of an arbitrary matrix and its inverse by absolute elementary matrices. In particular, this provides very short proofs for description of normal subgroups. In 2018, the author discussed various generalizations of these results to exceptional groups, specifically those of types E 6 and E 7 . Here, a further variation of Preusser’s wonderful idea is presented. Namely, in the case of GL( n , R ), n ≥ 4, similar expressions of elementary transvections as conjugates of g ∈ GL( n , R ) and g −1 by relative elementary matrices x ∈ E ( n , J ) and then x ∈ E ( n , R , J ), for an ideal J ⊴ R , are obtained. Again, in particular, this allows to give very short proofs for the description of subgroups normalized by E ( n , J ) or E ( n , R , J ), and thus also of subnormal subgroups in GL( n , R ).</description><subject>Commutativity</subject><subject>Conjugates</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Rings (mathematics)</subject><subject>Subgroups</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqGzEQhpeSQpO0L9DTQk89yBlpVivpGNy0MQQKqXMWsjzrKtgrV5KT9O2rxIFgMNUcJIbvmwH9TfOZw4QDqIvMwUjNQHAGkhvJ9LvmlEuFTCsjT-oblGCIqvvQnOV8D1XqNZ42V_P46NKyLb-pvaUHSpnab-TjZhtzKCGObRzauzFsY6Gx5Ek7m03a-Qu8diU8UDt1mT427we3zvTp9T5v7r5fzafX7Obnj9n08oZ5FJ1maBaACyE4Cie06sFwjhq910BAy4WDhUepnJDgehiclyh6QIOdVFIYj-fNl_3cbYp_dpSLvY-7NNaVVnTK1NMjvFErtyYbxiGW5PwmZG8ve8k7o4SWlWJHqBWNlNw6jjSE2j7gJ0f4WkvaBH9U-HogVKbQU1m5Xc529uv2kBV71qeYc6LBblPYuPTXcrDPCdt9wrYmbF8StrpKuJdyhccVpbff-I_1D0aNow4</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Vavilov, N.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20210201</creationdate><title>Toward the Reverse Decomposition of Unipotents. II. The Relative Case</title><author>Vavilov, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3248-39b03b22132a28760911383cc80e0edba0bc357a250a60fac53260393457529c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Commutativity</topic><topic>Conjugates</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Rings (mathematics)</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vavilov, N.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vavilov, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward the Reverse Decomposition of Unipotents. II. The Relative Case</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>252</volume><issue>6</issue><spage>749</spage><epage>760</epage><pages>749-760</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Recently, Raimund Preusser displayed very short polynomial expressions of elementary generators in classical groups over an arbitrary commutative ring as products of conjugates of an arbitrary matrix and its inverse by absolute elementary matrices. In particular, this provides very short proofs for description of normal subgroups. In 2018, the author discussed various generalizations of these results to exceptional groups, specifically those of types E 6 and E 7 . Here, a further variation of Preusser’s wonderful idea is presented. Namely, in the case of GL( n , R ), n ≥ 4, similar expressions of elementary transvections as conjugates of g ∈ GL( n , R ) and g −1 by relative elementary matrices x ∈ E ( n , J ) and then x ∈ E ( n , R , J ), for an ideal J ⊴ R , are obtained. Again, in particular, this allows to give very short proofs for the description of subgroups normalized by E ( n , J ) or E ( n , R , J ), and thus also of subnormal subgroups in GL( n , R ).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-021-05195-8</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2021-02, Vol.252 (6), p.749-760
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_2479999630
source Springer Nature - Complete Springer Journals
subjects Commutativity
Conjugates
Mathematics
Mathematics and Statistics
Polynomials
Rings (mathematics)
Subgroups
title Toward the Reverse Decomposition of Unipotents. II. The Relative Case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20the%20Reverse%20Decomposition%20of%20Unipotents.%20II.%20The%20Relative%20Case&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Vavilov,%20N.&rft.date=2021-02-01&rft.volume=252&rft.issue=6&rft.spage=749&rft.epage=760&rft.pages=749-760&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-021-05195-8&rft_dat=%3Cgale_proqu%3EA651497285%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479999630&rft_id=info:pmid/&rft_galeid=A651497285&rfr_iscdi=true