Orthogonality in smooth countably normed spaces
We generalize the concepts of normalized duality mapping, J -orthogonality and Birkhoff orthogonality from normed spaces to smooth countably normed spaces. We give some basic properties of J -orthogonality in smooth countably normed spaces and show a relation between J -orthogonality and metric proj...
Gespeichert in:
Veröffentlicht in: | Journal of inequalities and applications 2021-01, Vol.2021 (1), p.1-9, Article 20 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize the concepts of normalized duality mapping,
J
-orthogonality and Birkhoff orthogonality from normed spaces to smooth countably normed spaces. We give some basic properties of
J
-orthogonality in smooth countably normed spaces and show a relation between
J
-orthogonality and metric projection on smooth uniformly convex complete countably normed spaces. Moreover, we define the
J
-dual cone and
J
-orthogonal complement on a nonempty subset
S
of a smooth countably normed space and prove some basic results about the
J
-dual cone and the
J
-orthogonal complement of
S
. |
---|---|
ISSN: | 1029-242X 1025-5834 1029-242X |
DOI: | 10.1186/s13660-020-02531-5 |