Heat stress and poultry production: impact and amelioration

Globally, the poultry industry is gaining significant importance among the agricultural and its allied sectors. However, heat stress was found to negatively affect the poultry production particularly in the tropical regions. This review is therefore an attempt to generate information pertaining to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biometeorology 2021-02, Vol.65 (2), p.163-179
Hauptverfasser: Vandana, G. D., Sejian, V., Lees, A. M., Pragna, P., Silpa, M. V., Maloney, Shane K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue 2
container_start_page 163
container_title International journal of biometeorology
container_volume 65
creator Vandana, G. D.
Sejian, V.
Lees, A. M.
Pragna, P.
Silpa, M. V.
Maloney, Shane K.
description Globally, the poultry industry is gaining significant importance among the agricultural and its allied sectors. However, heat stress was found to negatively affect the poultry production particularly in the tropical regions. This review is therefore an attempt to generate information pertaining to the impacts of heat stress on poultry production and its amelioration. Heat stress reduces the growth, reproductive performance, and egg production in poultry birds. The reduction in productive potential of poultry birds on exposure to heat stress may be attributed to the deviation of energy resources from production to adaptation pathway. There are different approaches pertaining to relieving the adverse impacts of heat stress on poultry production. These approaches can be broadly categorized under genetic, management, and nutritional strategies. These approaches may reduce the negative effects of heat stress and enhance the productive performance of poultry birds. The management strategies include appropriate shelter design, providing shade, using sprinklers, implementing cooling devices, and using fans and ventilation systems. The recommended floor space for mature birds weighing 1.7 kg is 0.06 m 2 /bird while it is 0.13 m 2 /bird for the birds weighing 3.5 kg with 27.8 kg/m 2 bird density in either case. The nutritional interventions comprise ration balancing and providing essential micronutrients to improve the productive and reproductive performance in poultry birds. Fat, antioxidants, yeast, and electrolyte supplementations are some of the most commonly used nutritional strategies to ensure optimum production in the poultry industry. Furthermore, providing adequate water supply and disease surveillance measures may help to ensure optimum meat and egg production in the birds. The advanced biotechnological tools may aid to identify suitable genetic markers in poultry birds which might help in developing new strains of higher thermo-tolerance by designing suitable breeding program involving marker-assisted selection. These strategies may help to optimize and sustain poultry production in the changing climate scenario.
doi_str_mv 10.1007/s00484-020-02023-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479909159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479909159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-92304c1aa1489c9bde3b9950a56021620b683d6df293826e585c14a8fda601513</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EoqXwBxhQJObAnb9iw4QqoEiVWGC2nMRBqZqk2MnAv8dpCmwMpxvejzs9hFwi3CBAdhsAuOIpUBiHsjQ7InPkjKZIBT8mcxilDKmakbMQNhBDSmanZMYYUIEo5-R-5WyfhN67EBLblsmuG7a9_0p2viuHoq-79i6pm50t-r1sG7etO29H4ZycVHYb3MVhL8j70-PbcpWuX59flg_rtOAc-1RTBrxAa5ErXei8dCzXWoAVEihKCrlUrJRlRTVTVDqhRIHcqqq0ElAgW5DrqTf-9Dm40JtNN_g2njSUZ1qDRqGji06uwncheFeZna8b678Mghl5mYmXiVDMnpfJYujqUD3kjSt_Iz-AooFNhhCl9sP5v9v_1H4Do-pzsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479909159</pqid></control><display><type>article</type><title>Heat stress and poultry production: impact and amelioration</title><source>MEDLINE</source><source>Springer Journals</source><creator>Vandana, G. D. ; Sejian, V. ; Lees, A. M. ; Pragna, P. ; Silpa, M. V. ; Maloney, Shane K.</creator><creatorcontrib>Vandana, G. D. ; Sejian, V. ; Lees, A. M. ; Pragna, P. ; Silpa, M. V. ; Maloney, Shane K.</creatorcontrib><description>Globally, the poultry industry is gaining significant importance among the agricultural and its allied sectors. However, heat stress was found to negatively affect the poultry production particularly in the tropical regions. This review is therefore an attempt to generate information pertaining to the impacts of heat stress on poultry production and its amelioration. Heat stress reduces the growth, reproductive performance, and egg production in poultry birds. The reduction in productive potential of poultry birds on exposure to heat stress may be attributed to the deviation of energy resources from production to adaptation pathway. There are different approaches pertaining to relieving the adverse impacts of heat stress on poultry production. These approaches can be broadly categorized under genetic, management, and nutritional strategies. These approaches may reduce the negative effects of heat stress and enhance the productive performance of poultry birds. The management strategies include appropriate shelter design, providing shade, using sprinklers, implementing cooling devices, and using fans and ventilation systems. The recommended floor space for mature birds weighing 1.7 kg is 0.06 m 2 /bird while it is 0.13 m 2 /bird for the birds weighing 3.5 kg with 27.8 kg/m 2 bird density in either case. The nutritional interventions comprise ration balancing and providing essential micronutrients to improve the productive and reproductive performance in poultry birds. Fat, antioxidants, yeast, and electrolyte supplementations are some of the most commonly used nutritional strategies to ensure optimum production in the poultry industry. Furthermore, providing adequate water supply and disease surveillance measures may help to ensure optimum meat and egg production in the birds. The advanced biotechnological tools may aid to identify suitable genetic markers in poultry birds which might help in developing new strains of higher thermo-tolerance by designing suitable breeding program involving marker-assisted selection. These strategies may help to optimize and sustain poultry production in the changing climate scenario.</description><identifier>ISSN: 0020-7128</identifier><identifier>EISSN: 1432-1254</identifier><identifier>DOI: 10.1007/s00484-020-02023-7</identifier><identifier>PMID: 33025116</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural management ; Animal Physiology ; Animals ; Antioxidants ; Biological and Medical Physics ; Biophysics ; Biotechnology ; Birds ; Climate change ; Earth and Environmental Science ; Egg production ; Energy resources ; Energy sources ; Environment ; Environmental Health ; Genetic markers ; Heat stress ; Heat Stress Disorders ; Heat tolerance ; Heat-Shock Response ; Livestock breeding ; Marker-assisted selection ; Markers ; Meat ; Meteorology ; Micronutrients ; Optimization ; Plant Physiology ; Poultry ; Poultry Diseases ; Poultry production ; Reproduction ; Review Paper ; Sprinklers ; Tropical environment ; Tropical environments ; Ventilation ; Water supply ; Weighing ; Yeasts</subject><ispartof>International journal of biometeorology, 2021-02, Vol.65 (2), p.163-179</ispartof><rights>ISB 2020</rights><rights>ISB 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-92304c1aa1489c9bde3b9950a56021620b683d6df293826e585c14a8fda601513</citedby><cites>FETCH-LOGICAL-c441t-92304c1aa1489c9bde3b9950a56021620b683d6df293826e585c14a8fda601513</cites><orcidid>0000-0002-8224-4521</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00484-020-02023-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00484-020-02023-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33025116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vandana, G. D.</creatorcontrib><creatorcontrib>Sejian, V.</creatorcontrib><creatorcontrib>Lees, A. M.</creatorcontrib><creatorcontrib>Pragna, P.</creatorcontrib><creatorcontrib>Silpa, M. V.</creatorcontrib><creatorcontrib>Maloney, Shane K.</creatorcontrib><title>Heat stress and poultry production: impact and amelioration</title><title>International journal of biometeorology</title><addtitle>Int J Biometeorol</addtitle><addtitle>Int J Biometeorol</addtitle><description>Globally, the poultry industry is gaining significant importance among the agricultural and its allied sectors. However, heat stress was found to negatively affect the poultry production particularly in the tropical regions. This review is therefore an attempt to generate information pertaining to the impacts of heat stress on poultry production and its amelioration. Heat stress reduces the growth, reproductive performance, and egg production in poultry birds. The reduction in productive potential of poultry birds on exposure to heat stress may be attributed to the deviation of energy resources from production to adaptation pathway. There are different approaches pertaining to relieving the adverse impacts of heat stress on poultry production. These approaches can be broadly categorized under genetic, management, and nutritional strategies. These approaches may reduce the negative effects of heat stress and enhance the productive performance of poultry birds. The management strategies include appropriate shelter design, providing shade, using sprinklers, implementing cooling devices, and using fans and ventilation systems. The recommended floor space for mature birds weighing 1.7 kg is 0.06 m 2 /bird while it is 0.13 m 2 /bird for the birds weighing 3.5 kg with 27.8 kg/m 2 bird density in either case. The nutritional interventions comprise ration balancing and providing essential micronutrients to improve the productive and reproductive performance in poultry birds. Fat, antioxidants, yeast, and electrolyte supplementations are some of the most commonly used nutritional strategies to ensure optimum production in the poultry industry. Furthermore, providing adequate water supply and disease surveillance measures may help to ensure optimum meat and egg production in the birds. The advanced biotechnological tools may aid to identify suitable genetic markers in poultry birds which might help in developing new strains of higher thermo-tolerance by designing suitable breeding program involving marker-assisted selection. These strategies may help to optimize and sustain poultry production in the changing climate scenario.</description><subject>Agricultural management</subject><subject>Animal Physiology</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Biotechnology</subject><subject>Birds</subject><subject>Climate change</subject><subject>Earth and Environmental Science</subject><subject>Egg production</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Environment</subject><subject>Environmental Health</subject><subject>Genetic markers</subject><subject>Heat stress</subject><subject>Heat Stress Disorders</subject><subject>Heat tolerance</subject><subject>Heat-Shock Response</subject><subject>Livestock breeding</subject><subject>Marker-assisted selection</subject><subject>Markers</subject><subject>Meat</subject><subject>Meteorology</subject><subject>Micronutrients</subject><subject>Optimization</subject><subject>Plant Physiology</subject><subject>Poultry</subject><subject>Poultry Diseases</subject><subject>Poultry production</subject><subject>Reproduction</subject><subject>Review Paper</subject><subject>Sprinklers</subject><subject>Tropical environment</subject><subject>Tropical environments</subject><subject>Ventilation</subject><subject>Water supply</subject><subject>Weighing</subject><subject>Yeasts</subject><issn>0020-7128</issn><issn>1432-1254</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kD1PwzAQhi0EoqXwBxhQJObAnb9iw4QqoEiVWGC2nMRBqZqk2MnAv8dpCmwMpxvejzs9hFwi3CBAdhsAuOIpUBiHsjQ7InPkjKZIBT8mcxilDKmakbMQNhBDSmanZMYYUIEo5-R-5WyfhN67EBLblsmuG7a9_0p2viuHoq-79i6pm50t-r1sG7etO29H4ZycVHYb3MVhL8j70-PbcpWuX59flg_rtOAc-1RTBrxAa5ErXei8dCzXWoAVEihKCrlUrJRlRTVTVDqhRIHcqqq0ElAgW5DrqTf-9Dm40JtNN_g2njSUZ1qDRqGji06uwncheFeZna8b678Mghl5mYmXiVDMnpfJYujqUD3kjSt_Iz-AooFNhhCl9sP5v9v_1H4Do-pzsQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Vandana, G. D.</creator><creator>Sejian, V.</creator><creator>Lees, A. M.</creator><creator>Pragna, P.</creator><creator>Silpa, M. V.</creator><creator>Maloney, Shane K.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88F</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M1Q</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8224-4521</orcidid></search><sort><creationdate>20210201</creationdate><title>Heat stress and poultry production: impact and amelioration</title><author>Vandana, G. D. ; Sejian, V. ; Lees, A. M. ; Pragna, P. ; Silpa, M. V. ; Maloney, Shane K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-92304c1aa1489c9bde3b9950a56021620b683d6df293826e585c14a8fda601513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural management</topic><topic>Animal Physiology</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Biotechnology</topic><topic>Birds</topic><topic>Climate change</topic><topic>Earth and Environmental Science</topic><topic>Egg production</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Environment</topic><topic>Environmental Health</topic><topic>Genetic markers</topic><topic>Heat stress</topic><topic>Heat Stress Disorders</topic><topic>Heat tolerance</topic><topic>Heat-Shock Response</topic><topic>Livestock breeding</topic><topic>Marker-assisted selection</topic><topic>Markers</topic><topic>Meat</topic><topic>Meteorology</topic><topic>Micronutrients</topic><topic>Optimization</topic><topic>Plant Physiology</topic><topic>Poultry</topic><topic>Poultry Diseases</topic><topic>Poultry production</topic><topic>Reproduction</topic><topic>Review Paper</topic><topic>Sprinklers</topic><topic>Tropical environment</topic><topic>Tropical environments</topic><topic>Ventilation</topic><topic>Water supply</topic><topic>Weighing</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vandana, G. D.</creatorcontrib><creatorcontrib>Sejian, V.</creatorcontrib><creatorcontrib>Lees, A. M.</creatorcontrib><creatorcontrib>Pragna, P.</creatorcontrib><creatorcontrib>Silpa, M. V.</creatorcontrib><creatorcontrib>Maloney, Shane K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Military Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of biometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vandana, G. D.</au><au>Sejian, V.</au><au>Lees, A. M.</au><au>Pragna, P.</au><au>Silpa, M. V.</au><au>Maloney, Shane K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat stress and poultry production: impact and amelioration</atitle><jtitle>International journal of biometeorology</jtitle><stitle>Int J Biometeorol</stitle><addtitle>Int J Biometeorol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>65</volume><issue>2</issue><spage>163</spage><epage>179</epage><pages>163-179</pages><issn>0020-7128</issn><eissn>1432-1254</eissn><abstract>Globally, the poultry industry is gaining significant importance among the agricultural and its allied sectors. However, heat stress was found to negatively affect the poultry production particularly in the tropical regions. This review is therefore an attempt to generate information pertaining to the impacts of heat stress on poultry production and its amelioration. Heat stress reduces the growth, reproductive performance, and egg production in poultry birds. The reduction in productive potential of poultry birds on exposure to heat stress may be attributed to the deviation of energy resources from production to adaptation pathway. There are different approaches pertaining to relieving the adverse impacts of heat stress on poultry production. These approaches can be broadly categorized under genetic, management, and nutritional strategies. These approaches may reduce the negative effects of heat stress and enhance the productive performance of poultry birds. The management strategies include appropriate shelter design, providing shade, using sprinklers, implementing cooling devices, and using fans and ventilation systems. The recommended floor space for mature birds weighing 1.7 kg is 0.06 m 2 /bird while it is 0.13 m 2 /bird for the birds weighing 3.5 kg with 27.8 kg/m 2 bird density in either case. The nutritional interventions comprise ration balancing and providing essential micronutrients to improve the productive and reproductive performance in poultry birds. Fat, antioxidants, yeast, and electrolyte supplementations are some of the most commonly used nutritional strategies to ensure optimum production in the poultry industry. Furthermore, providing adequate water supply and disease surveillance measures may help to ensure optimum meat and egg production in the birds. The advanced biotechnological tools may aid to identify suitable genetic markers in poultry birds which might help in developing new strains of higher thermo-tolerance by designing suitable breeding program involving marker-assisted selection. These strategies may help to optimize and sustain poultry production in the changing climate scenario.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33025116</pmid><doi>10.1007/s00484-020-02023-7</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8224-4521</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7128
ispartof International journal of biometeorology, 2021-02, Vol.65 (2), p.163-179
issn 0020-7128
1432-1254
language eng
recordid cdi_proquest_journals_2479909159
source MEDLINE; Springer Journals
subjects Agricultural management
Animal Physiology
Animals
Antioxidants
Biological and Medical Physics
Biophysics
Biotechnology
Birds
Climate change
Earth and Environmental Science
Egg production
Energy resources
Energy sources
Environment
Environmental Health
Genetic markers
Heat stress
Heat Stress Disorders
Heat tolerance
Heat-Shock Response
Livestock breeding
Marker-assisted selection
Markers
Meat
Meteorology
Micronutrients
Optimization
Plant Physiology
Poultry
Poultry Diseases
Poultry production
Reproduction
Review Paper
Sprinklers
Tropical environment
Tropical environments
Ventilation
Water supply
Weighing
Yeasts
title Heat stress and poultry production: impact and amelioration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20stress%20and%20poultry%20production:%20impact%20and%20amelioration&rft.jtitle=International%20journal%20of%20biometeorology&rft.au=Vandana,%20G.%20D.&rft.date=2021-02-01&rft.volume=65&rft.issue=2&rft.spage=163&rft.epage=179&rft.pages=163-179&rft.issn=0020-7128&rft.eissn=1432-1254&rft_id=info:doi/10.1007/s00484-020-02023-7&rft_dat=%3Cproquest_cross%3E2479909159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479909159&rft_id=info:pmid/33025116&rfr_iscdi=true