A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data

The whole world faces a pandemic situation due to the deadly virus, namely COVID-19. It takes considerable time to get the virus well-matured to be traced, and during this time, it may be transmitted among other people. To get rid of this unexpected situation, quick identification of COVID-19 patien...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021-01, Vol.9, p.10263-10281
Hauptverfasser: Awal, Md. Abdul, Masud, Mehedi, Hossain, Md. Shahadat, Bulbul, Abdullah Al-Mamun, Mahmud, S. M. Hasan, Bairagi, Anupam Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10281
container_issue
container_start_page 10263
container_title IEEE access
container_volume 9
creator Awal, Md. Abdul
Masud, Mehedi
Hossain, Md. Shahadat
Bulbul, Abdullah Al-Mamun
Mahmud, S. M. Hasan
Bairagi, Anupam Kumar
description The whole world faces a pandemic situation due to the deadly virus, namely COVID-19. It takes considerable time to get the virus well-matured to be traced, and during this time, it may be transmitted among other people. To get rid of this unexpected situation, quick identification of COVID-19 patients is required. We have designed and optimized a machine learning-based framework using inpatient's facility data that will give a user-friendly, cost-effective, and time-efficient solution to this pandemic. The proposed framework uses Bayesian optimization to optimize the hyperparameters of the classifier and ADAptive SYNthetic (ADASYN) algorithm to balance the COVID and non-COVID classes of the dataset. Although the proposed technique has been applied to nine state-of-the-art classifiers to show the efficacy, it can be used to many classifiers and classification problems. It is evident from this study that eXtreme Gradient Boosting (XGB) provides the highest Kappa index of 97.00%. Compared to without ADASYN, our proposed approach yields an improvement in the kappa index of 96.94%. Besides, Bayesian optimization has been compared to grid search, random search to show efficiency. Furthermore, the most dominating features have been identified using SHapely Adaptive exPlanations (SHAP) analysis. A comparison has also been made among other related works. The proposed method is capable enough of tracing COVID patients spending less time than that of the conventional techniques. Finally, two potential applications, namely, clinically operable decision tree and decision support system, have been demonstrated to support clinical staff and build a recommender system.
doi_str_mv 10.1109/ACCESS.2021.3050852
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2479887896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9319642</ieee_id><doaj_id>oai_doaj_org_article_ead4f854dda34c998e419baa9af5e0de</doaj_id><sourcerecordid>2598537730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-df7b206dbf5e86f2028635213190858c43299797b5b6c0c4d071a52148f9de083</originalsourceid><addsrcrecordid>eNqNkl9v0zAUxSPExKaxT7AXS7wgoRQ7zh_7BalLV6jU0YcBr9aNc9O5JHHnuJvKp8ddqsF4wi-2rs_52dc-UXTJ6IQxKj9Oy_L69naS0IRNOM2oyJJX0VnCchnzjOev_1qfRhfDsKFhiFDKijfRKU8LkXPKziI3JV_tA7bkCvY4GOjJautNZ36BN7aPr2DAmtyAvjM9kiWC602_JnMHHT5a95M01pFy9WMxi5kkM_SoD74gsB1Z9NtAwd6TOWjTGr8nM_DwNjppoB3w4jifR9_n19_KL_Fy9XlRTpexTmXu47opqoTmddVkKPImdBqunCWMMxm6FTrliZSFLKqsyjXVaU0LBmE_FY2skQp-Hi1Gbm1ho7bOdOD2yoJRTwXr1gqcN7pFhVCnjcjSugaeaikFpkxWABLC4bTGwPo0sra7qsNah6YctC-gL3d6c6fW9kEFaJZwHgDvjwBn73c4eNWZQWPbQo92N6gkkyLjRcFpkL77R7qxO9eHp1JJWkghCiHzoOKjSjs7DA6b58swqg4RUWNE1CEi6hiR4Powuh6xss2gw-9ofHaGiORUCsryQ1pYUIv_V5fGP2WmtLveB-vlaDWIfywyfF6eJvw3DjjV_Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479887896</pqid></control><display><type>article</type><title>A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Awal, Md. Abdul ; Masud, Mehedi ; Hossain, Md. Shahadat ; Bulbul, Abdullah Al-Mamun ; Mahmud, S. M. Hasan ; Bairagi, Anupam Kumar</creator><creatorcontrib>Awal, Md. Abdul ; Masud, Mehedi ; Hossain, Md. Shahadat ; Bulbul, Abdullah Al-Mamun ; Mahmud, S. M. Hasan ; Bairagi, Anupam Kumar</creatorcontrib><description>The whole world faces a pandemic situation due to the deadly virus, namely COVID-19. It takes considerable time to get the virus well-matured to be traced, and during this time, it may be transmitted among other people. To get rid of this unexpected situation, quick identification of COVID-19 patients is required. We have designed and optimized a machine learning-based framework using inpatient's facility data that will give a user-friendly, cost-effective, and time-efficient solution to this pandemic. The proposed framework uses Bayesian optimization to optimize the hyperparameters of the classifier and ADAptive SYNthetic (ADASYN) algorithm to balance the COVID and non-COVID classes of the dataset. Although the proposed technique has been applied to nine state-of-the-art classifiers to show the efficacy, it can be used to many classifiers and classification problems. It is evident from this study that eXtreme Gradient Boosting (XGB) provides the highest Kappa index of 97.00%. Compared to without ADASYN, our proposed approach yields an improvement in the kappa index of 96.94%. Besides, Bayesian optimization has been compared to grid search, random search to show efficiency. Furthermore, the most dominating features have been identified using SHapely Adaptive exPlanations (SHAP) analysis. A comparison has also been made among other related works. The proposed method is capable enough of tracing COVID patients spending less time than that of the conventional techniques. Finally, two potential applications, namely, clinically operable decision tree and decision support system, have been demonstrated to support clinical staff and build a recommender system.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3050852</identifier><identifier>PMID: 34786301</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptive algorithms ; ADASYN ; Bayes methods ; Bayesian analysis ; Bayesian optimization ; Biomedical Engineering ; classification ; Classifiers ; Computational and artificial intelligence ; Computational modeling ; Computed tomography ; Computer Science ; Computer Science, Information Systems ; Computers and information processing ; Coronaviruses ; COVID-19 ; Decision support systems ; Decision trees ; Disease transmission ; Engineering ; Engineering, Electrical &amp; Electronic ; inpatient's facility data ; Machine learning ; Optimization ; Pandemics ; Recommender systems ; Science &amp; Technology ; Technology ; Telecommunications ; Viruses ; Viruses (medical)</subject><ispartof>IEEE access, 2021-01, Vol.9, p.10263-10281</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><rights>This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>44</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000609801600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c496t-df7b206dbf5e86f2028635213190858c43299797b5b6c0c4d071a52148f9de083</citedby><cites>FETCH-LOGICAL-c496t-df7b206dbf5e86f2028635213190858c43299797b5b6c0c4d071a52148f9de083</cites><orcidid>0000-0002-5652-2065 ; 0000-0002-6828-3559 ; 0000-0002-1368-7230 ; 0000-0003-1639-1301 ; 0000-0003-3028-4932 ; 0000-0001-6019-7245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9319642$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,866,887,2106,2118,27642,27933,27934,39267,54942</link.rule.ids></links><search><creatorcontrib>Awal, Md. Abdul</creatorcontrib><creatorcontrib>Masud, Mehedi</creatorcontrib><creatorcontrib>Hossain, Md. Shahadat</creatorcontrib><creatorcontrib>Bulbul, Abdullah Al-Mamun</creatorcontrib><creatorcontrib>Mahmud, S. M. Hasan</creatorcontrib><creatorcontrib>Bairagi, Anupam Kumar</creatorcontrib><title>A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data</title><title>IEEE access</title><addtitle>Access</addtitle><addtitle>IEEE ACCESS</addtitle><description>The whole world faces a pandemic situation due to the deadly virus, namely COVID-19. It takes considerable time to get the virus well-matured to be traced, and during this time, it may be transmitted among other people. To get rid of this unexpected situation, quick identification of COVID-19 patients is required. We have designed and optimized a machine learning-based framework using inpatient's facility data that will give a user-friendly, cost-effective, and time-efficient solution to this pandemic. The proposed framework uses Bayesian optimization to optimize the hyperparameters of the classifier and ADAptive SYNthetic (ADASYN) algorithm to balance the COVID and non-COVID classes of the dataset. Although the proposed technique has been applied to nine state-of-the-art classifiers to show the efficacy, it can be used to many classifiers and classification problems. It is evident from this study that eXtreme Gradient Boosting (XGB) provides the highest Kappa index of 97.00%. Compared to without ADASYN, our proposed approach yields an improvement in the kappa index of 96.94%. Besides, Bayesian optimization has been compared to grid search, random search to show efficiency. Furthermore, the most dominating features have been identified using SHapely Adaptive exPlanations (SHAP) analysis. A comparison has also been made among other related works. The proposed method is capable enough of tracing COVID patients spending less time than that of the conventional techniques. Finally, two potential applications, namely, clinically operable decision tree and decision support system, have been demonstrated to support clinical staff and build a recommender system.</description><subject>Adaptive algorithms</subject><subject>ADASYN</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian optimization</subject><subject>Biomedical Engineering</subject><subject>classification</subject><subject>Classifiers</subject><subject>Computational and artificial intelligence</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Computers and information processing</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Decision support systems</subject><subject>Decision trees</subject><subject>Disease transmission</subject><subject>Engineering</subject><subject>Engineering, Electrical &amp; Electronic</subject><subject>inpatient's facility data</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Pandemics</subject><subject>Recommender systems</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Telecommunications</subject><subject>Viruses</subject><subject>Viruses (medical)</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9v0zAUxSPExKaxT7AXS7wgoRQ7zh_7BalLV6jU0YcBr9aNc9O5JHHnuJvKp8ddqsF4wi-2rs_52dc-UXTJ6IQxKj9Oy_L69naS0IRNOM2oyJJX0VnCchnzjOev_1qfRhfDsKFhiFDKijfRKU8LkXPKziI3JV_tA7bkCvY4GOjJautNZ36BN7aPr2DAmtyAvjM9kiWC602_JnMHHT5a95M01pFy9WMxi5kkM_SoD74gsB1Z9NtAwd6TOWjTGr8nM_DwNjppoB3w4jifR9_n19_KL_Fy9XlRTpexTmXu47opqoTmddVkKPImdBqunCWMMxm6FTrliZSFLKqsyjXVaU0LBmE_FY2skQp-Hi1Gbm1ho7bOdOD2yoJRTwXr1gqcN7pFhVCnjcjSugaeaikFpkxWABLC4bTGwPo0sra7qsNah6YctC-gL3d6c6fW9kEFaJZwHgDvjwBn73c4eNWZQWPbQo92N6gkkyLjRcFpkL77R7qxO9eHp1JJWkghCiHzoOKjSjs7DA6b58swqg4RUWNE1CEi6hiR4Powuh6xss2gw-9ofHaGiORUCsryQ1pYUIv_V5fGP2WmtLveB-vlaDWIfywyfF6eJvw3DjjV_Q</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Awal, Md. Abdul</creator><creator>Masud, Mehedi</creator><creator>Hossain, Md. Shahadat</creator><creator>Bulbul, Abdullah Al-Mamun</creator><creator>Mahmud, S. M. Hasan</creator><creator>Bairagi, Anupam Kumar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5652-2065</orcidid><orcidid>https://orcid.org/0000-0002-6828-3559</orcidid><orcidid>https://orcid.org/0000-0002-1368-7230</orcidid><orcidid>https://orcid.org/0000-0003-1639-1301</orcidid><orcidid>https://orcid.org/0000-0003-3028-4932</orcidid><orcidid>https://orcid.org/0000-0001-6019-7245</orcidid></search><sort><creationdate>20210101</creationdate><title>A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data</title><author>Awal, Md. Abdul ; Masud, Mehedi ; Hossain, Md. Shahadat ; Bulbul, Abdullah Al-Mamun ; Mahmud, S. M. Hasan ; Bairagi, Anupam Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-df7b206dbf5e86f2028635213190858c43299797b5b6c0c4d071a52148f9de083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive algorithms</topic><topic>ADASYN</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian optimization</topic><topic>Biomedical Engineering</topic><topic>classification</topic><topic>Classifiers</topic><topic>Computational and artificial intelligence</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Computers and information processing</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Decision support systems</topic><topic>Decision trees</topic><topic>Disease transmission</topic><topic>Engineering</topic><topic>Engineering, Electrical &amp; Electronic</topic><topic>inpatient's facility data</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Pandemics</topic><topic>Recommender systems</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Telecommunications</topic><topic>Viruses</topic><topic>Viruses (medical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Awal, Md. Abdul</creatorcontrib><creatorcontrib>Masud, Mehedi</creatorcontrib><creatorcontrib>Hossain, Md. Shahadat</creatorcontrib><creatorcontrib>Bulbul, Abdullah Al-Mamun</creatorcontrib><creatorcontrib>Mahmud, S. M. Hasan</creatorcontrib><creatorcontrib>Bairagi, Anupam Kumar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Awal, Md. Abdul</au><au>Masud, Mehedi</au><au>Hossain, Md. Shahadat</au><au>Bulbul, Abdullah Al-Mamun</au><au>Mahmud, S. M. Hasan</au><au>Bairagi, Anupam Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><stitle>IEEE ACCESS</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><spage>10263</spage><epage>10281</epage><pages>10263-10281</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The whole world faces a pandemic situation due to the deadly virus, namely COVID-19. It takes considerable time to get the virus well-matured to be traced, and during this time, it may be transmitted among other people. To get rid of this unexpected situation, quick identification of COVID-19 patients is required. We have designed and optimized a machine learning-based framework using inpatient's facility data that will give a user-friendly, cost-effective, and time-efficient solution to this pandemic. The proposed framework uses Bayesian optimization to optimize the hyperparameters of the classifier and ADAptive SYNthetic (ADASYN) algorithm to balance the COVID and non-COVID classes of the dataset. Although the proposed technique has been applied to nine state-of-the-art classifiers to show the efficacy, it can be used to many classifiers and classification problems. It is evident from this study that eXtreme Gradient Boosting (XGB) provides the highest Kappa index of 97.00%. Compared to without ADASYN, our proposed approach yields an improvement in the kappa index of 96.94%. Besides, Bayesian optimization has been compared to grid search, random search to show efficiency. Furthermore, the most dominating features have been identified using SHapely Adaptive exPlanations (SHAP) analysis. A comparison has also been made among other related works. The proposed method is capable enough of tracing COVID patients spending less time than that of the conventional techniques. Finally, two potential applications, namely, clinically operable decision tree and decision support system, have been demonstrated to support clinical staff and build a recommender system.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><pmid>34786301</pmid><doi>10.1109/ACCESS.2021.3050852</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5652-2065</orcidid><orcidid>https://orcid.org/0000-0002-6828-3559</orcidid><orcidid>https://orcid.org/0000-0002-1368-7230</orcidid><orcidid>https://orcid.org/0000-0003-1639-1301</orcidid><orcidid>https://orcid.org/0000-0003-3028-4932</orcidid><orcidid>https://orcid.org/0000-0001-6019-7245</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021-01, Vol.9, p.10263-10281
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2479887896
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptive algorithms
ADASYN
Bayes methods
Bayesian analysis
Bayesian optimization
Biomedical Engineering
classification
Classifiers
Computational and artificial intelligence
Computational modeling
Computed tomography
Computer Science
Computer Science, Information Systems
Computers and information processing
Coronaviruses
COVID-19
Decision support systems
Decision trees
Disease transmission
Engineering
Engineering, Electrical & Electronic
inpatient's facility data
Machine learning
Optimization
Pandemics
Recommender systems
Science & Technology
Technology
Telecommunications
Viruses
Viruses (medical)
title A Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection From Inpatient Facility Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T11%3A55%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Bayesian%20Optimization-Based%20Machine%20Learning%20Framework%20for%20COVID-19%20Detection%20From%20Inpatient%20Facility%20Data&rft.jtitle=IEEE%20access&rft.au=Awal,%20Md.%20Abdul&rft.date=2021-01-01&rft.volume=9&rft.spage=10263&rft.epage=10281&rft.pages=10263-10281&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3050852&rft_dat=%3Cproquest_webof%3E2598537730%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479887896&rft_id=info:pmid/34786301&rft_ieee_id=9319642&rft_doaj_id=oai_doaj_org_article_ead4f854dda34c998e419baa9af5e0de&rfr_iscdi=true