DRL-GAN: Dual-Stream Representation Learning GAN for Low-Resolution Image Classification in UAV Applications
Identifying tiny objects from extremely low-resolution (LR) unmanned-aerial-vehicle-based remote sensing images is generally considered as a very challenging task, because of very limited information in the object areas. In recent years, there have been very limited attempts to approach this problem...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.1705-1716 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1716 |
---|---|
container_issue | |
container_start_page | 1705 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Xi, Yue Jia, Wenjing Zheng, Jiangbin Fan, Xiaochen Xie, Yefan Ren, Jinchang He, Xiangjian |
description | Identifying tiny objects from extremely low-resolution (LR) unmanned-aerial-vehicle-based remote sensing images is generally considered as a very challenging task, because of very limited information in the object areas. In recent years, there have been very limited attempts to approach this problem. These attempts intend to deal with LR image classification by enhancing either the poor image quality or image representations. In this article, we argue that the performance improvement in LR image classification is affected by the inconsistency of the information loss and learning priority on low-frequency (LF) components and high-frequency (HF) components. To address this LF-HF inconsistency problem, we propose a dual-stream representation learning generative adversarial network (DRL-GAN). The core idea is to produce enhanced image representations optimal for LR recognition by simultaneously recovering the missing information in LF and HF components, respectively, under the guidance of high-resolution (HR) images. We evaluate the performance of DRL-GAN on the challenging task of LR image classification. A comparison of the experimental results on the LR benchmark, namely HRSC and CIFAR-10, and our newly collected `WIDER-SHIP' dataset demonstrates the effectiveness of our DRL-GAN, which significantly improves the classification performance, with up to 10% gain on average. |
doi_str_mv | 10.1109/JSTARS.2020.3043109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479887436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9286580</ieee_id><doaj_id>oai_doaj_org_article_269d3da58fb148a5a238aaf2009f4211</doaj_id><sourcerecordid>2479887436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-d1e4932d93a2a9ca53860aaf9ad9090fccbe259718df9451f271a2b5320382d73</originalsourceid><addsrcrecordid>eNo9kUGL2zAQhUVpoem2v2Avgp6dSiPJlnoz2XabYlpIdnsVE1sKCo7lSg5L_32967CngTfvezPwCLnlbM05M19-7h_q3X4NDNhaMClm7Q1ZAVe84Eqot2TFjTAFl0y-Jx9yPjFWQmXEivR3u6a4r399pXcX7Iv9lBye6c6NyWU3TDiFONDGYRrCcKSzkfqYaBOfip3Lsb-87LdnPDq66THn4EO7QGGgj_UfWo9jf5XyR_LOY5_dp-u8IY_fvz1sfhTN7_vtpm6KVjI9FR130gjojEBA06ISumSI3mBnmGG-bQ8OlKm47ryRinuoOMJBCWBCQ1eJG7JdcruIJzumcMb0z0YM9kWI6WgxTaHtnYXSdKJDpf2BS40KQej5FDBmvATO56zPS9aY4t-Ly5M9xUsa5vctyMpoXUlRzi6xuNoUc07Ov17lzD5XZJeK7HNF9lrRTN0uVHDOvRIGdKk0E_8BRd6Lyw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479887436</pqid></control><display><type>article</type><title>DRL-GAN: Dual-Stream Representation Learning GAN for Low-Resolution Image Classification in UAV Applications</title><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Xi, Yue ; Jia, Wenjing ; Zheng, Jiangbin ; Fan, Xiaochen ; Xie, Yefan ; Ren, Jinchang ; He, Xiangjian</creator><creatorcontrib>Xi, Yue ; Jia, Wenjing ; Zheng, Jiangbin ; Fan, Xiaochen ; Xie, Yefan ; Ren, Jinchang ; He, Xiangjian</creatorcontrib><description>Identifying tiny objects from extremely low-resolution (LR) unmanned-aerial-vehicle-based remote sensing images is generally considered as a very challenging task, because of very limited information in the object areas. In recent years, there have been very limited attempts to approach this problem. These attempts intend to deal with LR image classification by enhancing either the poor image quality or image representations. In this article, we argue that the performance improvement in LR image classification is affected by the inconsistency of the information loss and learning priority on low-frequency (LF) components and high-frequency (HF) components. To address this LF-HF inconsistency problem, we propose a dual-stream representation learning generative adversarial network (DRL-GAN). The core idea is to produce enhanced image representations optimal for LR recognition by simultaneously recovering the missing information in LF and HF components, respectively, under the guidance of high-resolution (HR) images. We evaluate the performance of DRL-GAN on the challenging task of LR image classification. A comparison of the experimental results on the LR benchmark, namely HRSC and CIFAR-10, and our newly collected `WIDER-SHIP' dataset demonstrates the effectiveness of our DRL-GAN, which significantly improves the classification performance, with up to 10% gain on average.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3043109</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Classification ; Components ; Convolutional neural networks (CNNs) ; Feature extraction ; Generative adversarial networks ; Hafnium ; Image classification ; Image enhancement ; Image quality ; Image recognition ; Image representation ; Image resolution ; Learning ; low-resolution (LR) image classification ; Neural networks ; Object recognition ; Performance evaluation ; Remote sensing ; representation learning ; Representations ; Resolution ; Rivers ; Task analysis ; unmanned aerial vehicle (UAV)-based remote sensing ; Unmanned aerial vehicles</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.1705-1716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-d1e4932d93a2a9ca53860aaf9ad9090fccbe259718df9451f271a2b5320382d73</citedby><cites>FETCH-LOGICAL-c408t-d1e4932d93a2a9ca53860aaf9ad9090fccbe259718df9451f271a2b5320382d73</cites><orcidid>0000-0002-0940-3338 ; 0000-0002-3689-1621 ; 0000-0001-8962-540X ; 0000-0003-0623-584X ; 0000-0001-6116-3194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4014,27914,27915,27916</link.rule.ids></links><search><creatorcontrib>Xi, Yue</creatorcontrib><creatorcontrib>Jia, Wenjing</creatorcontrib><creatorcontrib>Zheng, Jiangbin</creatorcontrib><creatorcontrib>Fan, Xiaochen</creatorcontrib><creatorcontrib>Xie, Yefan</creatorcontrib><creatorcontrib>Ren, Jinchang</creatorcontrib><creatorcontrib>He, Xiangjian</creatorcontrib><title>DRL-GAN: Dual-Stream Representation Learning GAN for Low-Resolution Image Classification in UAV Applications</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Identifying tiny objects from extremely low-resolution (LR) unmanned-aerial-vehicle-based remote sensing images is generally considered as a very challenging task, because of very limited information in the object areas. In recent years, there have been very limited attempts to approach this problem. These attempts intend to deal with LR image classification by enhancing either the poor image quality or image representations. In this article, we argue that the performance improvement in LR image classification is affected by the inconsistency of the information loss and learning priority on low-frequency (LF) components and high-frequency (HF) components. To address this LF-HF inconsistency problem, we propose a dual-stream representation learning generative adversarial network (DRL-GAN). The core idea is to produce enhanced image representations optimal for LR recognition by simultaneously recovering the missing information in LF and HF components, respectively, under the guidance of high-resolution (HR) images. We evaluate the performance of DRL-GAN on the challenging task of LR image classification. A comparison of the experimental results on the LR benchmark, namely HRSC and CIFAR-10, and our newly collected `WIDER-SHIP' dataset demonstrates the effectiveness of our DRL-GAN, which significantly improves the classification performance, with up to 10% gain on average.</description><subject>Classification</subject><subject>Components</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Hafnium</subject><subject>Image classification</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Image recognition</subject><subject>Image representation</subject><subject>Image resolution</subject><subject>Learning</subject><subject>low-resolution (LR) image classification</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Remote sensing</subject><subject>representation learning</subject><subject>Representations</subject><subject>Resolution</subject><subject>Rivers</subject><subject>Task analysis</subject><subject>unmanned aerial vehicle (UAV)-based remote sensing</subject><subject>Unmanned aerial vehicles</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kUGL2zAQhUVpoem2v2Avgp6dSiPJlnoz2XabYlpIdnsVE1sKCo7lSg5L_32967CngTfvezPwCLnlbM05M19-7h_q3X4NDNhaMClm7Q1ZAVe84Eqot2TFjTAFl0y-Jx9yPjFWQmXEivR3u6a4r399pXcX7Iv9lBye6c6NyWU3TDiFONDGYRrCcKSzkfqYaBOfip3Lsb-87LdnPDq66THn4EO7QGGgj_UfWo9jf5XyR_LOY5_dp-u8IY_fvz1sfhTN7_vtpm6KVjI9FR130gjojEBA06ISumSI3mBnmGG-bQ8OlKm47ryRinuoOMJBCWBCQ1eJG7JdcruIJzumcMb0z0YM9kWI6WgxTaHtnYXSdKJDpf2BS40KQej5FDBmvATO56zPS9aY4t-Ly5M9xUsa5vctyMpoXUlRzi6xuNoUc07Ov17lzD5XZJeK7HNF9lrRTN0uVHDOvRIGdKk0E_8BRd6Lyw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Xi, Yue</creator><creator>Jia, Wenjing</creator><creator>Zheng, Jiangbin</creator><creator>Fan, Xiaochen</creator><creator>Xie, Yefan</creator><creator>Ren, Jinchang</creator><creator>He, Xiangjian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0940-3338</orcidid><orcidid>https://orcid.org/0000-0002-3689-1621</orcidid><orcidid>https://orcid.org/0000-0001-8962-540X</orcidid><orcidid>https://orcid.org/0000-0003-0623-584X</orcidid><orcidid>https://orcid.org/0000-0001-6116-3194</orcidid></search><sort><creationdate>2021</creationdate><title>DRL-GAN: Dual-Stream Representation Learning GAN for Low-Resolution Image Classification in UAV Applications</title><author>Xi, Yue ; Jia, Wenjing ; Zheng, Jiangbin ; Fan, Xiaochen ; Xie, Yefan ; Ren, Jinchang ; He, Xiangjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-d1e4932d93a2a9ca53860aaf9ad9090fccbe259718df9451f271a2b5320382d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Components</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Hafnium</topic><topic>Image classification</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Image recognition</topic><topic>Image representation</topic><topic>Image resolution</topic><topic>Learning</topic><topic>low-resolution (LR) image classification</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Remote sensing</topic><topic>representation learning</topic><topic>Representations</topic><topic>Resolution</topic><topic>Rivers</topic><topic>Task analysis</topic><topic>unmanned aerial vehicle (UAV)-based remote sensing</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Yue</creatorcontrib><creatorcontrib>Jia, Wenjing</creatorcontrib><creatorcontrib>Zheng, Jiangbin</creatorcontrib><creatorcontrib>Fan, Xiaochen</creatorcontrib><creatorcontrib>Xie, Yefan</creatorcontrib><creatorcontrib>Ren, Jinchang</creatorcontrib><creatorcontrib>He, Xiangjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Yue</au><au>Jia, Wenjing</au><au>Zheng, Jiangbin</au><au>Fan, Xiaochen</au><au>Xie, Yefan</au><au>Ren, Jinchang</au><au>He, Xiangjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DRL-GAN: Dual-Stream Representation Learning GAN for Low-Resolution Image Classification in UAV Applications</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>1705</spage><epage>1716</epage><pages>1705-1716</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Identifying tiny objects from extremely low-resolution (LR) unmanned-aerial-vehicle-based remote sensing images is generally considered as a very challenging task, because of very limited information in the object areas. In recent years, there have been very limited attempts to approach this problem. These attempts intend to deal with LR image classification by enhancing either the poor image quality or image representations. In this article, we argue that the performance improvement in LR image classification is affected by the inconsistency of the information loss and learning priority on low-frequency (LF) components and high-frequency (HF) components. To address this LF-HF inconsistency problem, we propose a dual-stream representation learning generative adversarial network (DRL-GAN). The core idea is to produce enhanced image representations optimal for LR recognition by simultaneously recovering the missing information in LF and HF components, respectively, under the guidance of high-resolution (HR) images. We evaluate the performance of DRL-GAN on the challenging task of LR image classification. A comparison of the experimental results on the LR benchmark, namely HRSC and CIFAR-10, and our newly collected `WIDER-SHIP' dataset demonstrates the effectiveness of our DRL-GAN, which significantly improves the classification performance, with up to 10% gain on average.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3043109</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0940-3338</orcidid><orcidid>https://orcid.org/0000-0002-3689-1621</orcidid><orcidid>https://orcid.org/0000-0001-8962-540X</orcidid><orcidid>https://orcid.org/0000-0003-0623-584X</orcidid><orcidid>https://orcid.org/0000-0001-6116-3194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.1705-1716 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2479887436 |
source | DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Classification Components Convolutional neural networks (CNNs) Feature extraction Generative adversarial networks Hafnium Image classification Image enhancement Image quality Image recognition Image representation Image resolution Learning low-resolution (LR) image classification Neural networks Object recognition Performance evaluation Remote sensing representation learning Representations Resolution Rivers Task analysis unmanned aerial vehicle (UAV)-based remote sensing Unmanned aerial vehicles |
title | DRL-GAN: Dual-Stream Representation Learning GAN for Low-Resolution Image Classification in UAV Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DRL-GAN:%20Dual-Stream%20Representation%20Learning%20GAN%20for%20Low-Resolution%20Image%20Classification%20in%20UAV%20Applications&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Xi,%20Yue&rft.date=2021&rft.volume=14&rft.spage=1705&rft.epage=1716&rft.pages=1705-1716&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3043109&rft_dat=%3Cproquest_cross%3E2479887436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479887436&rft_id=info:pmid/&rft_ieee_id=9286580&rft_doaj_id=oai_doaj_org_article_269d3da58fb148a5a238aaf2009f4211&rfr_iscdi=true |