Parabolicity, Brownian Exit Time and Properness of Solitons of the Direct and Inverse Mean Curvature Flow

We study some potential theoretic properties of homothetic solitons Σ n of the MCF and the IMCF. Using the analysis of the extrinsic distance function defined on these submanifolds in R n + m , we observe similarities and differences in the geometry of solitons in both flows. In particular, we show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2021, Vol.31 (1), p.579-618
Hauptverfasser: Gimeno, Vicent, Palmer, Vicente
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 1
container_start_page 579
container_title The Journal of Geometric Analysis
container_volume 31
creator Gimeno, Vicent
Palmer, Vicente
description We study some potential theoretic properties of homothetic solitons Σ n of the MCF and the IMCF. Using the analysis of the extrinsic distance function defined on these submanifolds in R n + m , we observe similarities and differences in the geometry of solitons in both flows. In particular, we show that parabolic MCF-solitons Σ n with n > 2 are self-shrinkers and that parabolic IMCF-solitons of any dimension are self-expanders. We have studied too the geometric behavior of parabolic MCF and IMCF-solitons confined in a ball, the behavior of the mean exit time function for the Brownian motion defined on Σ as well as a classification of properly immersed MCF-self-shrinkers with bounded second fundamental form, following the lines of Cao and Li (Calc Var 46:879–889, 2013).
doi_str_mv 10.1007/s12220-019-00291-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2479804263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707340104</galeid><sourcerecordid>A707340104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-f8cc3c433997422d8375283941e0ca14692770b6010a6487ee1cef824c290b3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhQdRsD7-gKuAW0dvHjOZWWp9gmKhLtyFNL1TI21Sk7Taf2_sCO4ki9xcvnNPLqcoTiicUwB5ESljDEqgbQnAWlrynWJAq2r7fN3NNVRQ1i2r94uDGN8BRM2FHBR2pIOe-Lk1Nm3OyFXwn85qR26-bCIvdoFEuykZBb_E4DBG4jsyznjyblunNyTXNqBJW_DBrTFEJE-YZwxXYa3TKiC5nfvPo2Kv0_OIx7_3YTG-vXkZ3pePz3cPw8vH0vCqSWXXGMON4LxtpWBs2nBZsYa3giIYTUXeQUqY1EBB16KRiNRg1zBhWAsTflic9lOXwX-sMCb17lfBZUPFhGwbEKzmmTrvqZmeo7Ku8ylok88UF9Z4h53N_UsJkotsJLKA9QITfIwBO7UMdqHDRlFQPwmoPgGVE1DbBNSPC-9FMcNuhuHvL_-ovgEUiYdd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479804263</pqid></control><display><type>article</type><title>Parabolicity, Brownian Exit Time and Properness of Solitons of the Direct and Inverse Mean Curvature Flow</title><source>SpringerLink Journals</source><creator>Gimeno, Vicent ; Palmer, Vicente</creator><creatorcontrib>Gimeno, Vicent ; Palmer, Vicente</creatorcontrib><description>We study some potential theoretic properties of homothetic solitons Σ n of the MCF and the IMCF. Using the analysis of the extrinsic distance function defined on these submanifolds in R n + m , we observe similarities and differences in the geometry of solitons in both flows. In particular, we show that parabolic MCF-solitons Σ n with n &gt; 2 are self-shrinkers and that parabolic IMCF-solitons of any dimension are self-expanders. We have studied too the geometric behavior of parabolic MCF and IMCF-solitons confined in a ball, the behavior of the mean exit time function for the Brownian motion defined on Σ as well as a classification of properly immersed MCF-self-shrinkers with bounded second fundamental form, following the lines of Cao and Li (Calc Var 46:879–889, 2013).</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-019-00291-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Brownian motion ; Convex and Discrete Geometry ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Expanders ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Solitary waves ; Time functions</subject><ispartof>The Journal of Geometric Analysis, 2021, Vol.31 (1), p.579-618</ispartof><rights>Mathematica Josephina, Inc. 2019</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Mathematica Josephina, Inc. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-f8cc3c433997422d8375283941e0ca14692770b6010a6487ee1cef824c290b3</citedby><cites>FETCH-LOGICAL-c358t-f8cc3c433997422d8375283941e0ca14692770b6010a6487ee1cef824c290b3</cites><orcidid>0000-0002-0033-7717 ; 0000-0001-7982-1677</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-019-00291-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-019-00291-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gimeno, Vicent</creatorcontrib><creatorcontrib>Palmer, Vicente</creatorcontrib><title>Parabolicity, Brownian Exit Time and Properness of Solitons of the Direct and Inverse Mean Curvature Flow</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We study some potential theoretic properties of homothetic solitons Σ n of the MCF and the IMCF. Using the analysis of the extrinsic distance function defined on these submanifolds in R n + m , we observe similarities and differences in the geometry of solitons in both flows. In particular, we show that parabolic MCF-solitons Σ n with n &gt; 2 are self-shrinkers and that parabolic IMCF-solitons of any dimension are self-expanders. We have studied too the geometric behavior of parabolic MCF and IMCF-solitons confined in a ball, the behavior of the mean exit time function for the Brownian motion defined on Σ as well as a classification of properly immersed MCF-self-shrinkers with bounded second fundamental form, following the lines of Cao and Li (Calc Var 46:879–889, 2013).</description><subject>Abstract Harmonic Analysis</subject><subject>Brownian motion</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Expanders</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Solitary waves</subject><subject>Time functions</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtLAzEUhQdRsD7-gKuAW0dvHjOZWWp9gmKhLtyFNL1TI21Sk7Taf2_sCO4ki9xcvnNPLqcoTiicUwB5ESljDEqgbQnAWlrynWJAq2r7fN3NNVRQ1i2r94uDGN8BRM2FHBR2pIOe-Lk1Nm3OyFXwn85qR26-bCIvdoFEuykZBb_E4DBG4jsyznjyblunNyTXNqBJW_DBrTFEJE-YZwxXYa3TKiC5nfvPo2Kv0_OIx7_3YTG-vXkZ3pePz3cPw8vH0vCqSWXXGMON4LxtpWBs2nBZsYa3giIYTUXeQUqY1EBB16KRiNRg1zBhWAsTflic9lOXwX-sMCb17lfBZUPFhGwbEKzmmTrvqZmeo7Ku8ylok88UF9Z4h53N_UsJkotsJLKA9QITfIwBO7UMdqHDRlFQPwmoPgGVE1DbBNSPC-9FMcNuhuHvL_-ovgEUiYdd</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Gimeno, Vicent</creator><creator>Palmer, Vicente</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-0033-7717</orcidid><orcidid>https://orcid.org/0000-0001-7982-1677</orcidid></search><sort><creationdate>2021</creationdate><title>Parabolicity, Brownian Exit Time and Properness of Solitons of the Direct and Inverse Mean Curvature Flow</title><author>Gimeno, Vicent ; Palmer, Vicente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-f8cc3c433997422d8375283941e0ca14692770b6010a6487ee1cef824c290b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Brownian motion</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Expanders</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Solitary waves</topic><topic>Time functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gimeno, Vicent</creatorcontrib><creatorcontrib>Palmer, Vicente</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gimeno, Vicent</au><au>Palmer, Vicente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parabolicity, Brownian Exit Time and Properness of Solitons of the Direct and Inverse Mean Curvature Flow</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2021</date><risdate>2021</risdate><volume>31</volume><issue>1</issue><spage>579</spage><epage>618</epage><pages>579-618</pages><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We study some potential theoretic properties of homothetic solitons Σ n of the MCF and the IMCF. Using the analysis of the extrinsic distance function defined on these submanifolds in R n + m , we observe similarities and differences in the geometry of solitons in both flows. In particular, we show that parabolic MCF-solitons Σ n with n &gt; 2 are self-shrinkers and that parabolic IMCF-solitons of any dimension are self-expanders. We have studied too the geometric behavior of parabolic MCF and IMCF-solitons confined in a ball, the behavior of the mean exit time function for the Brownian motion defined on Σ as well as a classification of properly immersed MCF-self-shrinkers with bounded second fundamental form, following the lines of Cao and Li (Calc Var 46:879–889, 2013).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-019-00291-3</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-0033-7717</orcidid><orcidid>https://orcid.org/0000-0001-7982-1677</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2021, Vol.31 (1), p.579-618
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2479804263
source SpringerLink Journals
subjects Abstract Harmonic Analysis
Brownian motion
Convex and Discrete Geometry
Differential Geometry
Dynamical Systems and Ergodic Theory
Expanders
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Solitary waves
Time functions
title Parabolicity, Brownian Exit Time and Properness of Solitons of the Direct and Inverse Mean Curvature Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T11%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parabolicity,%20Brownian%20Exit%20Time%20and%20Properness%20of%20Solitons%20of%20the%20Direct%20and%20Inverse%20Mean%20Curvature%20Flow&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Gimeno,%20Vicent&rft.date=2021&rft.volume=31&rft.issue=1&rft.spage=579&rft.epage=618&rft.pages=579-618&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-019-00291-3&rft_dat=%3Cgale_proqu%3EA707340104%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479804263&rft_id=info:pmid/&rft_galeid=A707340104&rfr_iscdi=true