Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries

The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-01, Vol.31 (4), p.n/a
Hauptverfasser: Shi, Zixiong, Sun, Zhongti, Cai, Jingsheng, Fan, Zhaodi, Jin, Jia, Wang, Menglei, Sun, Jingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced functional materials
container_volume 31
creator Shi, Zixiong
Sun, Zhongti
Cai, Jingsheng
Fan, Zhaodi
Jin, Jia
Wang, Menglei
Sun, Jingyu
description The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis to date. Herein, a CoFe alloy decorated mesoporous carbon sphere (CoFe‐MCS) serving as a promising mediator for Li–S batteries is reported. Such bimetallic alloying boosts dual‐directional electrocatalytic activity toward effective polysulfide conversion throughout detailed electroanalytic characterization, theoretical calculation, and operando instrumental probing. Accordingly, the S@CoFe‐MCS cathode harvests a stable cycling with a low capacity decay rate of 0.062% per cycle over 500 cycles at 2.0 C. More encouragingly, benefiting from the optimized redox kinetics and delicate grid architecture, printable S@CoFe‐MCS cathode achieves an excellent rate performance at a sulfur loading of 4.0 mg cm−2 and advanced areal capacity of 6.0 mAh cm−2 at 7.7 mg cm−2. This work explores non‐precious metal alloy electrocatalysts in printable cathodes toward dual‐directional polysulfide conversion, holding great potential in the pursuit of Li–S commercialization. A CoFe alloy electrocatalyst supported on mesoporous carbon synthesized via a bimetallic organic framework pyrolysis strategy exhibits robust dual‐directional electrocatalysis toward polysulfide conversion, thus enabling excellent areal capacity and cycling stability for 3D‐printed sulfur cathodes with high sulfur loadings.
doi_str_mv 10.1002/adfm.202006798
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479708488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479708488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3858-590f99e17e7370d651813e163831cbf352119e4e4d16a60e724547913e8f11373</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU3MnM5PMsr8qVCyo4C6kM4mkpE1Npsrs-giCb9gnMaWiS1f33sN3DtyD0CWQHhCSXstaL3spSQkpWMmPUAcKKBJKUn78u8PLKToLYUEIMEazDnID50JjVq94tJF2t_0cGa-qxriVtHjmbBs2Vpta4bGNsneVbGQUTcDvRuKBWap4W1PhvrWu3edo5_HMm1Uj51bhqdltvx7xQDaN8kaFc3SipQ3q4md20fNk_DS8TaYPN3fD_jSpKM95kpdEl6UCphhlpC5y4EAVFJRTqOaa5ilAqTKV1VDIgiiWZnnGyshwDUAZ7aKrQ-7au7eNCo1YuI2PTwWRRpARnnEeqd6BqrwLwSst1t4spW8FELEvVexLFb-lRkN5MHwYq9p_aNEfTe7_vN9XwH0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479708488</pqid></control><display><type>article</type><title>Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries</title><source>Access via Wiley Online Library</source><creator>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Fan, Zhaodi ; Jin, Jia ; Wang, Menglei ; Sun, Jingyu</creator><creatorcontrib>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Fan, Zhaodi ; Jin, Jia ; Wang, Menglei ; Sun, Jingyu</creatorcontrib><description>The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis to date. Herein, a CoFe alloy decorated mesoporous carbon sphere (CoFe‐MCS) serving as a promising mediator for Li–S batteries is reported. Such bimetallic alloying boosts dual‐directional electrocatalytic activity toward effective polysulfide conversion throughout detailed electroanalytic characterization, theoretical calculation, and operando instrumental probing. Accordingly, the S@CoFe‐MCS cathode harvests a stable cycling with a low capacity decay rate of 0.062% per cycle over 500 cycles at 2.0 C. More encouragingly, benefiting from the optimized redox kinetics and delicate grid architecture, printable S@CoFe‐MCS cathode achieves an excellent rate performance at a sulfur loading of 4.0 mg cm−2 and advanced areal capacity of 6.0 mAh cm−2 at 7.7 mg cm−2. This work explores non‐precious metal alloy electrocatalysts in printable cathodes toward dual‐directional polysulfide conversion, holding great potential in the pursuit of Li–S commercialization. A CoFe alloy electrocatalyst supported on mesoporous carbon synthesized via a bimetallic organic framework pyrolysis strategy exhibits robust dual‐directional electrocatalysis toward polysulfide conversion, thus enabling excellent areal capacity and cycling stability for 3D‐printed sulfur cathodes with high sulfur loadings.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202006798</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Alloying ; Bimetals ; Cathodes ; CoFe alloys ; Commercialization ; Conversion ; Decay rate ; dual‐directional electrocatalytic effect ; Electrocatalysis ; Electrocatalysts ; Intermetallic compounds ; Lithium sulfur batteries ; Li–S batteries ; Materials science ; Polysulfides ; Precious metal alloys</subject><ispartof>Advanced functional materials, 2021-01, Vol.31 (4), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3858-590f99e17e7370d651813e163831cbf352119e4e4d16a60e724547913e8f11373</citedby><cites>FETCH-LOGICAL-c3858-590f99e17e7370d651813e163831cbf352119e4e4d16a60e724547913e8f11373</cites><orcidid>0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202006798$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202006798$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Fan, Zhaodi</creatorcontrib><creatorcontrib>Jin, Jia</creatorcontrib><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><title>Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries</title><title>Advanced functional materials</title><description>The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis to date. Herein, a CoFe alloy decorated mesoporous carbon sphere (CoFe‐MCS) serving as a promising mediator for Li–S batteries is reported. Such bimetallic alloying boosts dual‐directional electrocatalytic activity toward effective polysulfide conversion throughout detailed electroanalytic characterization, theoretical calculation, and operando instrumental probing. Accordingly, the S@CoFe‐MCS cathode harvests a stable cycling with a low capacity decay rate of 0.062% per cycle over 500 cycles at 2.0 C. More encouragingly, benefiting from the optimized redox kinetics and delicate grid architecture, printable S@CoFe‐MCS cathode achieves an excellent rate performance at a sulfur loading of 4.0 mg cm−2 and advanced areal capacity of 6.0 mAh cm−2 at 7.7 mg cm−2. This work explores non‐precious metal alloy electrocatalysts in printable cathodes toward dual‐directional polysulfide conversion, holding great potential in the pursuit of Li–S commercialization. A CoFe alloy electrocatalyst supported on mesoporous carbon synthesized via a bimetallic organic framework pyrolysis strategy exhibits robust dual‐directional electrocatalysis toward polysulfide conversion, thus enabling excellent areal capacity and cycling stability for 3D‐printed sulfur cathodes with high sulfur loadings.</description><subject>3D printing</subject><subject>Alloying</subject><subject>Bimetals</subject><subject>Cathodes</subject><subject>CoFe alloys</subject><subject>Commercialization</subject><subject>Conversion</subject><subject>Decay rate</subject><subject>dual‐directional electrocatalytic effect</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Intermetallic compounds</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Materials science</subject><subject>Polysulfides</subject><subject>Precious metal alloys</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU3MnM5PMsr8qVCyo4C6kM4mkpE1Npsrs-giCb9gnMaWiS1f33sN3DtyD0CWQHhCSXstaL3spSQkpWMmPUAcKKBJKUn78u8PLKToLYUEIMEazDnID50JjVq94tJF2t_0cGa-qxriVtHjmbBs2Vpta4bGNsneVbGQUTcDvRuKBWap4W1PhvrWu3edo5_HMm1Uj51bhqdltvx7xQDaN8kaFc3SipQ3q4md20fNk_DS8TaYPN3fD_jSpKM95kpdEl6UCphhlpC5y4EAVFJRTqOaa5ilAqTKV1VDIgiiWZnnGyshwDUAZ7aKrQ-7au7eNCo1YuI2PTwWRRpARnnEeqd6BqrwLwSst1t4spW8FELEvVexLFb-lRkN5MHwYq9p_aNEfTe7_vN9XwH0k</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Shi, Zixiong</creator><creator>Sun, Zhongti</creator><creator>Cai, Jingsheng</creator><creator>Fan, Zhaodi</creator><creator>Jin, Jia</creator><creator>Wang, Menglei</creator><creator>Sun, Jingyu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20210101</creationdate><title>Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries</title><author>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Fan, Zhaodi ; Jin, Jia ; Wang, Menglei ; Sun, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3858-590f99e17e7370d651813e163831cbf352119e4e4d16a60e724547913e8f11373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>Alloying</topic><topic>Bimetals</topic><topic>Cathodes</topic><topic>CoFe alloys</topic><topic>Commercialization</topic><topic>Conversion</topic><topic>Decay rate</topic><topic>dual‐directional electrocatalytic effect</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Intermetallic compounds</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Materials science</topic><topic>Polysulfides</topic><topic>Precious metal alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Fan, Zhaodi</creatorcontrib><creatorcontrib>Jin, Jia</creatorcontrib><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zixiong</au><au>Sun, Zhongti</au><au>Cai, Jingsheng</au><au>Fan, Zhaodi</au><au>Jin, Jia</au><au>Wang, Menglei</au><au>Sun, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis to date. Herein, a CoFe alloy decorated mesoporous carbon sphere (CoFe‐MCS) serving as a promising mediator for Li–S batteries is reported. Such bimetallic alloying boosts dual‐directional electrocatalytic activity toward effective polysulfide conversion throughout detailed electroanalytic characterization, theoretical calculation, and operando instrumental probing. Accordingly, the S@CoFe‐MCS cathode harvests a stable cycling with a low capacity decay rate of 0.062% per cycle over 500 cycles at 2.0 C. More encouragingly, benefiting from the optimized redox kinetics and delicate grid architecture, printable S@CoFe‐MCS cathode achieves an excellent rate performance at a sulfur loading of 4.0 mg cm−2 and advanced areal capacity of 6.0 mAh cm−2 at 7.7 mg cm−2. This work explores non‐precious metal alloy electrocatalysts in printable cathodes toward dual‐directional polysulfide conversion, holding great potential in the pursuit of Li–S commercialization. A CoFe alloy electrocatalyst supported on mesoporous carbon synthesized via a bimetallic organic framework pyrolysis strategy exhibits robust dual‐directional electrocatalysis toward polysulfide conversion, thus enabling excellent areal capacity and cycling stability for 3D‐printed sulfur cathodes with high sulfur loadings.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202006798</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-01, Vol.31 (4), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2479708488
source Access via Wiley Online Library
subjects 3D printing
Alloying
Bimetals
Cathodes
CoFe alloys
Commercialization
Conversion
Decay rate
dual‐directional electrocatalytic effect
Electrocatalysis
Electrocatalysts
Intermetallic compounds
Lithium sulfur batteries
Li–S batteries
Materials science
Polysulfides
Precious metal alloys
title Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Dual%E2%80%90Directional%20Polysulfide%20Electrocatalysis%20via%20Bimetallic%20Alloying%20for%20Printable%20Li%E2%80%93S%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Shi,%20Zixiong&rft.date=2021-01-01&rft.volume=31&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202006798&rft_dat=%3Cproquest_cross%3E2479708488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479708488&rft_id=info:pmid/&rfr_iscdi=true