Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries
The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-01, Vol.31 (4), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Shi, Zixiong Sun, Zhongti Cai, Jingsheng Fan, Zhaodi Jin, Jia Wang, Menglei Sun, Jingyu |
description | The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis to date. Herein, a CoFe alloy decorated mesoporous carbon sphere (CoFe‐MCS) serving as a promising mediator for Li–S batteries is reported. Such bimetallic alloying boosts dual‐directional electrocatalytic activity toward effective polysulfide conversion throughout detailed electroanalytic characterization, theoretical calculation, and operando instrumental probing. Accordingly, the S@CoFe‐MCS cathode harvests a stable cycling with a low capacity decay rate of 0.062% per cycle over 500 cycles at 2.0 C. More encouragingly, benefiting from the optimized redox kinetics and delicate grid architecture, printable S@CoFe‐MCS cathode achieves an excellent rate performance at a sulfur loading of 4.0 mg cm−2 and advanced areal capacity of 6.0 mAh cm−2 at 7.7 mg cm−2. This work explores non‐precious metal alloy electrocatalysts in printable cathodes toward dual‐directional polysulfide conversion, holding great potential in the pursuit of Li–S commercialization.
A CoFe alloy electrocatalyst supported on mesoporous carbon synthesized via a bimetallic organic framework pyrolysis strategy exhibits robust dual‐directional electrocatalysis toward polysulfide conversion, thus enabling excellent areal capacity and cycling stability for 3D‐printed sulfur cathodes with high sulfur loadings. |
doi_str_mv | 10.1002/adfm.202006798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479708488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479708488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3858-590f99e17e7370d651813e163831cbf352119e4e4d16a60e724547913e8f11373</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXU3MnM5PMsr8qVCyo4C6kM4mkpE1Npsrs-giCb9gnMaWiS1f33sN3DtyD0CWQHhCSXstaL3spSQkpWMmPUAcKKBJKUn78u8PLKToLYUEIMEazDnID50JjVq94tJF2t_0cGa-qxriVtHjmbBs2Vpta4bGNsneVbGQUTcDvRuKBWap4W1PhvrWu3edo5_HMm1Uj51bhqdltvx7xQDaN8kaFc3SipQ3q4md20fNk_DS8TaYPN3fD_jSpKM95kpdEl6UCphhlpC5y4EAVFJRTqOaa5ilAqTKV1VDIgiiWZnnGyshwDUAZ7aKrQ-7au7eNCo1YuI2PTwWRRpARnnEeqd6BqrwLwSst1t4spW8FELEvVexLFb-lRkN5MHwYq9p_aNEfTe7_vN9XwH0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479708488</pqid></control><display><type>article</type><title>Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries</title><source>Access via Wiley Online Library</source><creator>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Fan, Zhaodi ; Jin, Jia ; Wang, Menglei ; Sun, Jingyu</creator><creatorcontrib>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Fan, Zhaodi ; Jin, Jia ; Wang, Menglei ; Sun, Jingyu</creatorcontrib><description>The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis to date. Herein, a CoFe alloy decorated mesoporous carbon sphere (CoFe‐MCS) serving as a promising mediator for Li–S batteries is reported. Such bimetallic alloying boosts dual‐directional electrocatalytic activity toward effective polysulfide conversion throughout detailed electroanalytic characterization, theoretical calculation, and operando instrumental probing. Accordingly, the S@CoFe‐MCS cathode harvests a stable cycling with a low capacity decay rate of 0.062% per cycle over 500 cycles at 2.0 C. More encouragingly, benefiting from the optimized redox kinetics and delicate grid architecture, printable S@CoFe‐MCS cathode achieves an excellent rate performance at a sulfur loading of 4.0 mg cm−2 and advanced areal capacity of 6.0 mAh cm−2 at 7.7 mg cm−2. This work explores non‐precious metal alloy electrocatalysts in printable cathodes toward dual‐directional polysulfide conversion, holding great potential in the pursuit of Li–S commercialization.
A CoFe alloy electrocatalyst supported on mesoporous carbon synthesized via a bimetallic organic framework pyrolysis strategy exhibits robust dual‐directional electrocatalysis toward polysulfide conversion, thus enabling excellent areal capacity and cycling stability for 3D‐printed sulfur cathodes with high sulfur loadings.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202006798</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Alloying ; Bimetals ; Cathodes ; CoFe alloys ; Commercialization ; Conversion ; Decay rate ; dual‐directional electrocatalytic effect ; Electrocatalysis ; Electrocatalysts ; Intermetallic compounds ; Lithium sulfur batteries ; Li–S batteries ; Materials science ; Polysulfides ; Precious metal alloys</subject><ispartof>Advanced functional materials, 2021-01, Vol.31 (4), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3858-590f99e17e7370d651813e163831cbf352119e4e4d16a60e724547913e8f11373</citedby><cites>FETCH-LOGICAL-c3858-590f99e17e7370d651813e163831cbf352119e4e4d16a60e724547913e8f11373</cites><orcidid>0000-0002-9812-3046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202006798$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202006798$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Fan, Zhaodi</creatorcontrib><creatorcontrib>Jin, Jia</creatorcontrib><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><title>Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries</title><title>Advanced functional materials</title><description>The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis to date. Herein, a CoFe alloy decorated mesoporous carbon sphere (CoFe‐MCS) serving as a promising mediator for Li–S batteries is reported. Such bimetallic alloying boosts dual‐directional electrocatalytic activity toward effective polysulfide conversion throughout detailed electroanalytic characterization, theoretical calculation, and operando instrumental probing. Accordingly, the S@CoFe‐MCS cathode harvests a stable cycling with a low capacity decay rate of 0.062% per cycle over 500 cycles at 2.0 C. More encouragingly, benefiting from the optimized redox kinetics and delicate grid architecture, printable S@CoFe‐MCS cathode achieves an excellent rate performance at a sulfur loading of 4.0 mg cm−2 and advanced areal capacity of 6.0 mAh cm−2 at 7.7 mg cm−2. This work explores non‐precious metal alloy electrocatalysts in printable cathodes toward dual‐directional polysulfide conversion, holding great potential in the pursuit of Li–S commercialization.
A CoFe alloy electrocatalyst supported on mesoporous carbon synthesized via a bimetallic organic framework pyrolysis strategy exhibits robust dual‐directional electrocatalysis toward polysulfide conversion, thus enabling excellent areal capacity and cycling stability for 3D‐printed sulfur cathodes with high sulfur loadings.</description><subject>3D printing</subject><subject>Alloying</subject><subject>Bimetals</subject><subject>Cathodes</subject><subject>CoFe alloys</subject><subject>Commercialization</subject><subject>Conversion</subject><subject>Decay rate</subject><subject>dual‐directional electrocatalytic effect</subject><subject>Electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Intermetallic compounds</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Materials science</subject><subject>Polysulfides</subject><subject>Precious metal alloys</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXU3MnM5PMsr8qVCyo4C6kM4mkpE1Npsrs-giCb9gnMaWiS1f33sN3DtyD0CWQHhCSXstaL3spSQkpWMmPUAcKKBJKUn78u8PLKToLYUEIMEazDnID50JjVq94tJF2t_0cGa-qxriVtHjmbBs2Vpta4bGNsneVbGQUTcDvRuKBWap4W1PhvrWu3edo5_HMm1Uj51bhqdltvx7xQDaN8kaFc3SipQ3q4md20fNk_DS8TaYPN3fD_jSpKM95kpdEl6UCphhlpC5y4EAVFJRTqOaa5ilAqTKV1VDIgiiWZnnGyshwDUAZ7aKrQ-7au7eNCo1YuI2PTwWRRpARnnEeqd6BqrwLwSst1t4spW8FELEvVexLFb-lRkN5MHwYq9p_aNEfTe7_vN9XwH0k</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Shi, Zixiong</creator><creator>Sun, Zhongti</creator><creator>Cai, Jingsheng</creator><creator>Fan, Zhaodi</creator><creator>Jin, Jia</creator><creator>Wang, Menglei</creator><creator>Sun, Jingyu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></search><sort><creationdate>20210101</creationdate><title>Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries</title><author>Shi, Zixiong ; Sun, Zhongti ; Cai, Jingsheng ; Fan, Zhaodi ; Jin, Jia ; Wang, Menglei ; Sun, Jingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3858-590f99e17e7370d651813e163831cbf352119e4e4d16a60e724547913e8f11373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>Alloying</topic><topic>Bimetals</topic><topic>Cathodes</topic><topic>CoFe alloys</topic><topic>Commercialization</topic><topic>Conversion</topic><topic>Decay rate</topic><topic>dual‐directional electrocatalytic effect</topic><topic>Electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Intermetallic compounds</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Materials science</topic><topic>Polysulfides</topic><topic>Precious metal alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Zixiong</creatorcontrib><creatorcontrib>Sun, Zhongti</creatorcontrib><creatorcontrib>Cai, Jingsheng</creatorcontrib><creatorcontrib>Fan, Zhaodi</creatorcontrib><creatorcontrib>Jin, Jia</creatorcontrib><creatorcontrib>Wang, Menglei</creatorcontrib><creatorcontrib>Sun, Jingyu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Zixiong</au><au>Sun, Zhongti</au><au>Cai, Jingsheng</au><au>Fan, Zhaodi</au><au>Jin, Jia</au><au>Wang, Menglei</au><au>Sun, Jingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The rational design of electrocatalyst has readily stimulated a burgeoning interest in expediting polysulfide conversion and hence essentially restricting the “shuttle effect” in Li–S systems. Nevertheless, seldom efforts have been devoted to probing the dual‐directional polysulfide electrocatalysis to date. Herein, a CoFe alloy decorated mesoporous carbon sphere (CoFe‐MCS) serving as a promising mediator for Li–S batteries is reported. Such bimetallic alloying boosts dual‐directional electrocatalytic activity toward effective polysulfide conversion throughout detailed electroanalytic characterization, theoretical calculation, and operando instrumental probing. Accordingly, the S@CoFe‐MCS cathode harvests a stable cycling with a low capacity decay rate of 0.062% per cycle over 500 cycles at 2.0 C. More encouragingly, benefiting from the optimized redox kinetics and delicate grid architecture, printable S@CoFe‐MCS cathode achieves an excellent rate performance at a sulfur loading of 4.0 mg cm−2 and advanced areal capacity of 6.0 mAh cm−2 at 7.7 mg cm−2. This work explores non‐precious metal alloy electrocatalysts in printable cathodes toward dual‐directional polysulfide conversion, holding great potential in the pursuit of Li–S commercialization.
A CoFe alloy electrocatalyst supported on mesoporous carbon synthesized via a bimetallic organic framework pyrolysis strategy exhibits robust dual‐directional electrocatalysis toward polysulfide conversion, thus enabling excellent areal capacity and cycling stability for 3D‐printed sulfur cathodes with high sulfur loadings.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202006798</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9812-3046</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-01, Vol.31 (4), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2479708488 |
source | Access via Wiley Online Library |
subjects | 3D printing Alloying Bimetals Cathodes CoFe alloys Commercialization Conversion Decay rate dual‐directional electrocatalytic effect Electrocatalysis Electrocatalysts Intermetallic compounds Lithium sulfur batteries Li–S batteries Materials science Polysulfides Precious metal alloys |
title | Boosting Dual‐Directional Polysulfide Electrocatalysis via Bimetallic Alloying for Printable Li–S Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20Dual%E2%80%90Directional%20Polysulfide%20Electrocatalysis%20via%20Bimetallic%20Alloying%20for%20Printable%20Li%E2%80%93S%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Shi,%20Zixiong&rft.date=2021-01-01&rft.volume=31&rft.issue=4&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202006798&rft_dat=%3Cproquest_cross%3E2479708488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479708488&rft_id=info:pmid/&rfr_iscdi=true |