What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio

Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of real estate research 2017-04, Vol.39 (2), p.235-262
Hauptverfasser: Mamonov, Stanislav, Benbunan-Fich, Raquel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 2
container_start_page 235
container_title The Journal of real estate research
container_volume 39
creator Mamonov, Stanislav
Benbunan-Fich, Raquel
description Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth quarter of 2007, which includes 340,537 mortgages with a total principal value of $69.8 billion. This portfolio had the highest delinquency rate in the agency’s history: 19.4% versus the historical average of 1.7%. We find that although a number of information variables that were available at the time of mortgage acquisition are correlated with the subsequent delinquencies, building an accurate model proves challenging. Identification of the majority of delinquencies in the historical data comes at a cost of low precision.
doi_str_mv 10.1080/10835547.2017.12091471
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2479669346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26386715</jstor_id><sourcerecordid>26386715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-589eaf061dd6bc957726564ea57e969cd8abe5c700f66aaadb7ab8b22080b523</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQQl43ppk82dzEqlWhRZ7KPS4zu5m261tokl68Nubstajh5kJvPcmww-hG0pGlBTkLrVcCK5GjFA1ooxoyhU9QQMmNc0oVeIUDUihZSYKkp-jixA2hBDOmBqg9-UaIh6DxUuDpwa8xa13OzyHEPGsCxE-TLhPSgjOhl57hAhJs51d4bg2eALWdgbPIJXzcQUrg-fp0bpt5y7RWQvbYK5-5xAtJk-L8Us2fXt-HT9MszrXRUynaQMtkbRpZFVroRSTQnIDQhktdd0UUBlRK0JaKQGgqRRURcVYIlAJlg_Rbb_207uvvQmx3Li9t-nHknGlpdQ5l_-5qKaEMckZTy7Zu2rvQvCmLT99twP_XVJSHpCXR-TlAXl5RJ6C131wE6Lzfykm80IqKvIf5IN7sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910226424</pqid></control><display><type>article</type><title>What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Mamonov, Stanislav ; Benbunan-Fich, Raquel</creator><creatorcontrib>Mamonov, Stanislav ; Benbunan-Fich, Raquel</creatorcontrib><description>Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth quarter of 2007, which includes 340,537 mortgages with a total principal value of $69.8 billion. This portfolio had the highest delinquency rate in the agency’s history: 19.4% versus the historical average of 1.7%. We find that although a number of information variables that were available at the time of mortgage acquisition are correlated with the subsequent delinquencies, building an accurate model proves challenging. Identification of the majority of delinquencies in the historical data comes at a cost of low precision.</description><identifier>ISSN: 0896-5803</identifier><identifier>EISSN: 2691-1175</identifier><identifier>DOI: 10.1080/10835547.2017.12091471</identifier><language>eng</language><publisher>Clemson: American Real Estate Society at Clemson University</publisher><subject>Credit scoring ; Data ; Data mining ; Default ; Delinquency ; Economic crisis ; Economic statistics ; Equity ; Errors ; Financial institutions ; Foreclosure ; Government sponsored enterprises ; Home loans ; Housing prices ; Loan workouts ; Mortgage companies ; Mortgages ; Prepayments ; Subprime lending</subject><ispartof>The Journal of real estate research, 2017-04, Vol.39 (2), p.235-262</ispartof><rights>Copyright American Real Estate Society Apr/Jun 2017</rights><rights>2017 American Real Estate Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-589eaf061dd6bc957726564ea57e969cd8abe5c700f66aaadb7ab8b22080b523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26386715$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26386715$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Mamonov, Stanislav</creatorcontrib><creatorcontrib>Benbunan-Fich, Raquel</creatorcontrib><title>What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio</title><title>The Journal of real estate research</title><description>Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth quarter of 2007, which includes 340,537 mortgages with a total principal value of $69.8 billion. This portfolio had the highest delinquency rate in the agency’s history: 19.4% versus the historical average of 1.7%. We find that although a number of information variables that were available at the time of mortgage acquisition are correlated with the subsequent delinquencies, building an accurate model proves challenging. Identification of the majority of delinquencies in the historical data comes at a cost of low precision.</description><subject>Credit scoring</subject><subject>Data</subject><subject>Data mining</subject><subject>Default</subject><subject>Delinquency</subject><subject>Economic crisis</subject><subject>Economic statistics</subject><subject>Equity</subject><subject>Errors</subject><subject>Financial institutions</subject><subject>Foreclosure</subject><subject>Government sponsored enterprises</subject><subject>Home loans</subject><subject>Housing prices</subject><subject>Loan workouts</subject><subject>Mortgage companies</subject><subject>Mortgages</subject><subject>Prepayments</subject><subject>Subprime lending</subject><issn>0896-5803</issn><issn>2691-1175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKsfQQl43ppk82dzEqlWhRZ7KPS4zu5m261tokl68Nubstajh5kJvPcmww-hG0pGlBTkLrVcCK5GjFA1ooxoyhU9QQMmNc0oVeIUDUihZSYKkp-jixA2hBDOmBqg9-UaIh6DxUuDpwa8xa13OzyHEPGsCxE-TLhPSgjOhl57hAhJs51d4bg2eALWdgbPIJXzcQUrg-fp0bpt5y7RWQvbYK5-5xAtJk-L8Us2fXt-HT9MszrXRUynaQMtkbRpZFVroRSTQnIDQhktdd0UUBlRK0JaKQGgqRRURcVYIlAJlg_Rbb_207uvvQmx3Li9t-nHknGlpdQ5l_-5qKaEMckZTy7Zu2rvQvCmLT99twP_XVJSHpCXR-TlAXl5RJ6C131wE6Lzfykm80IqKvIf5IN7sg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Mamonov, Stanislav</creator><creator>Benbunan-Fich, Raquel</creator><general>American Real Estate Society at Clemson University</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio</title><author>Mamonov, Stanislav ; Benbunan-Fich, Raquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-589eaf061dd6bc957726564ea57e969cd8abe5c700f66aaadb7ab8b22080b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Credit scoring</topic><topic>Data</topic><topic>Data mining</topic><topic>Default</topic><topic>Delinquency</topic><topic>Economic crisis</topic><topic>Economic statistics</topic><topic>Equity</topic><topic>Errors</topic><topic>Financial institutions</topic><topic>Foreclosure</topic><topic>Government sponsored enterprises</topic><topic>Home loans</topic><topic>Housing prices</topic><topic>Loan workouts</topic><topic>Mortgage companies</topic><topic>Mortgages</topic><topic>Prepayments</topic><topic>Subprime lending</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamonov, Stanislav</creatorcontrib><creatorcontrib>Benbunan-Fich, Raquel</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The Journal of real estate research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamonov, Stanislav</au><au>Benbunan-Fich, Raquel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio</atitle><jtitle>The Journal of real estate research</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>39</volume><issue>2</issue><spage>235</spage><epage>262</epage><pages>235-262</pages><issn>0896-5803</issn><eissn>2691-1175</eissn><abstract>Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth quarter of 2007, which includes 340,537 mortgages with a total principal value of $69.8 billion. This portfolio had the highest delinquency rate in the agency’s history: 19.4% versus the historical average of 1.7%. We find that although a number of information variables that were available at the time of mortgage acquisition are correlated with the subsequent delinquencies, building an accurate model proves challenging. Identification of the majority of delinquencies in the historical data comes at a cost of low precision.</abstract><cop>Clemson</cop><pub>American Real Estate Society at Clemson University</pub><doi>10.1080/10835547.2017.12091471</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0896-5803
ispartof The Journal of real estate research, 2017-04, Vol.39 (2), p.235-262
issn 0896-5803
2691-1175
language eng
recordid cdi_proquest_journals_2479669346
source JSTOR Archive Collection A-Z Listing
subjects Credit scoring
Data
Data mining
Default
Delinquency
Economic crisis
Economic statistics
Equity
Errors
Financial institutions
Foreclosure
Government sponsored enterprises
Home loans
Housing prices
Loan workouts
Mortgage companies
Mortgages
Prepayments
Subprime lending
title What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Can%20We%20Learn%20from%20Past%20Mistakes?%20Lessons%20from%20Data%20Mining%20the%20Fannie%20Mae%20Mortgage%20Portfolio&rft.jtitle=The%20Journal%20of%20real%20estate%20research&rft.au=Mamonov,%20Stanislav&rft.date=2017-04-01&rft.volume=39&rft.issue=2&rft.spage=235&rft.epage=262&rft.pages=235-262&rft.issn=0896-5803&rft.eissn=2691-1175&rft_id=info:doi/10.1080/10835547.2017.12091471&rft_dat=%3Cjstor_proqu%3E26386715%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910226424&rft_id=info:pmid/&rft_jstor_id=26386715&rfr_iscdi=true