What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio
Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth q...
Gespeichert in:
Veröffentlicht in: | The Journal of real estate research 2017-04, Vol.39 (2), p.235-262 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 262 |
---|---|
container_issue | 2 |
container_start_page | 235 |
container_title | The Journal of real estate research |
container_volume | 39 |
creator | Mamonov, Stanislav Benbunan-Fich, Raquel |
description | Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth quarter of 2007, which includes 340,537 mortgages with a total principal value of $69.8 billion. This portfolio had the highest delinquency rate in the agency’s history: 19.4% versus the historical average of 1.7%. We find that although a number of information variables that were available at the time of mortgage acquisition are correlated with the subsequent delinquencies, building an accurate model proves challenging. Identification of the majority of delinquencies in the historical data comes at a cost of low precision. |
doi_str_mv | 10.1080/10835547.2017.12091471 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2479669346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26386715</jstor_id><sourcerecordid>26386715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-589eaf061dd6bc957726564ea57e969cd8abe5c700f66aaadb7ab8b22080b523</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfQQl43ppk82dzEqlWhRZ7KPS4zu5m261tokl68Nubstajh5kJvPcmww-hG0pGlBTkLrVcCK5GjFA1ooxoyhU9QQMmNc0oVeIUDUihZSYKkp-jixA2hBDOmBqg9-UaIh6DxUuDpwa8xa13OzyHEPGsCxE-TLhPSgjOhl57hAhJs51d4bg2eALWdgbPIJXzcQUrg-fp0bpt5y7RWQvbYK5-5xAtJk-L8Us2fXt-HT9MszrXRUynaQMtkbRpZFVroRSTQnIDQhktdd0UUBlRK0JaKQGgqRRURcVYIlAJlg_Rbb_207uvvQmx3Li9t-nHknGlpdQ5l_-5qKaEMckZTy7Zu2rvQvCmLT99twP_XVJSHpCXR-TlAXl5RJ6C131wE6Lzfykm80IqKvIf5IN7sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1910226424</pqid></control><display><type>article</type><title>What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio</title><source>JSTOR Archive Collection A-Z Listing</source><creator>Mamonov, Stanislav ; Benbunan-Fich, Raquel</creator><creatorcontrib>Mamonov, Stanislav ; Benbunan-Fich, Raquel</creatorcontrib><description>Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth quarter of 2007, which includes 340,537 mortgages with a total principal value of $69.8 billion. This portfolio had the highest delinquency rate in the agency’s history: 19.4% versus the historical average of 1.7%. We find that although a number of information variables that were available at the time of mortgage acquisition are correlated with the subsequent delinquencies, building an accurate model proves challenging. Identification of the majority of delinquencies in the historical data comes at a cost of low precision.</description><identifier>ISSN: 0896-5803</identifier><identifier>EISSN: 2691-1175</identifier><identifier>DOI: 10.1080/10835547.2017.12091471</identifier><language>eng</language><publisher>Clemson: American Real Estate Society at Clemson University</publisher><subject>Credit scoring ; Data ; Data mining ; Default ; Delinquency ; Economic crisis ; Economic statistics ; Equity ; Errors ; Financial institutions ; Foreclosure ; Government sponsored enterprises ; Home loans ; Housing prices ; Loan workouts ; Mortgage companies ; Mortgages ; Prepayments ; Subprime lending</subject><ispartof>The Journal of real estate research, 2017-04, Vol.39 (2), p.235-262</ispartof><rights>Copyright American Real Estate Society Apr/Jun 2017</rights><rights>2017 American Real Estate Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-589eaf061dd6bc957726564ea57e969cd8abe5c700f66aaadb7ab8b22080b523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26386715$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26386715$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids></links><search><creatorcontrib>Mamonov, Stanislav</creatorcontrib><creatorcontrib>Benbunan-Fich, Raquel</creatorcontrib><title>What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio</title><title>The Journal of real estate research</title><description>Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth quarter of 2007, which includes 340,537 mortgages with a total principal value of $69.8 billion. This portfolio had the highest delinquency rate in the agency’s history: 19.4% versus the historical average of 1.7%. We find that although a number of information variables that were available at the time of mortgage acquisition are correlated with the subsequent delinquencies, building an accurate model proves challenging. Identification of the majority of delinquencies in the historical data comes at a cost of low precision.</description><subject>Credit scoring</subject><subject>Data</subject><subject>Data mining</subject><subject>Default</subject><subject>Delinquency</subject><subject>Economic crisis</subject><subject>Economic statistics</subject><subject>Equity</subject><subject>Errors</subject><subject>Financial institutions</subject><subject>Foreclosure</subject><subject>Government sponsored enterprises</subject><subject>Home loans</subject><subject>Housing prices</subject><subject>Loan workouts</subject><subject>Mortgage companies</subject><subject>Mortgages</subject><subject>Prepayments</subject><subject>Subprime lending</subject><issn>0896-5803</issn><issn>2691-1175</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKsfQQl43ppk82dzEqlWhRZ7KPS4zu5m261tokl68Nubstajh5kJvPcmww-hG0pGlBTkLrVcCK5GjFA1ooxoyhU9QQMmNc0oVeIUDUihZSYKkp-jixA2hBDOmBqg9-UaIh6DxUuDpwa8xa13OzyHEPGsCxE-TLhPSgjOhl57hAhJs51d4bg2eALWdgbPIJXzcQUrg-fp0bpt5y7RWQvbYK5-5xAtJk-L8Us2fXt-HT9MszrXRUynaQMtkbRpZFVroRSTQnIDQhktdd0UUBlRK0JaKQGgqRRURcVYIlAJlg_Rbb_207uvvQmx3Li9t-nHknGlpdQ5l_-5qKaEMckZTy7Zu2rvQvCmLT99twP_XVJSHpCXR-TlAXl5RJ6C131wE6Lzfykm80IqKvIf5IN7sg</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Mamonov, Stanislav</creator><creator>Benbunan-Fich, Raquel</creator><general>American Real Estate Society at Clemson University</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio</title><author>Mamonov, Stanislav ; Benbunan-Fich, Raquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-589eaf061dd6bc957726564ea57e969cd8abe5c700f66aaadb7ab8b22080b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Credit scoring</topic><topic>Data</topic><topic>Data mining</topic><topic>Default</topic><topic>Delinquency</topic><topic>Economic crisis</topic><topic>Economic statistics</topic><topic>Equity</topic><topic>Errors</topic><topic>Financial institutions</topic><topic>Foreclosure</topic><topic>Government sponsored enterprises</topic><topic>Home loans</topic><topic>Housing prices</topic><topic>Loan workouts</topic><topic>Mortgage companies</topic><topic>Mortgages</topic><topic>Prepayments</topic><topic>Subprime lending</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamonov, Stanislav</creatorcontrib><creatorcontrib>Benbunan-Fich, Raquel</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>The Journal of real estate research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamonov, Stanislav</au><au>Benbunan-Fich, Raquel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio</atitle><jtitle>The Journal of real estate research</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>39</volume><issue>2</issue><spage>235</spage><epage>262</epage><pages>235-262</pages><issn>0896-5803</issn><eissn>2691-1175</eissn><abstract>Fannie Mae has been widely criticized for its role in the recent financial crisis, yet no detailed analysis of the systematic patterns of the mortgage defaults that occurred has been published. To address this knowledge gap, we perform data mining on the Fannie Mae mortgage portfolio of the fourth quarter of 2007, which includes 340,537 mortgages with a total principal value of $69.8 billion. This portfolio had the highest delinquency rate in the agency’s history: 19.4% versus the historical average of 1.7%. We find that although a number of information variables that were available at the time of mortgage acquisition are correlated with the subsequent delinquencies, building an accurate model proves challenging. Identification of the majority of delinquencies in the historical data comes at a cost of low precision.</abstract><cop>Clemson</cop><pub>American Real Estate Society at Clemson University</pub><doi>10.1080/10835547.2017.12091471</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-5803 |
ispartof | The Journal of real estate research, 2017-04, Vol.39 (2), p.235-262 |
issn | 0896-5803 2691-1175 |
language | eng |
recordid | cdi_proquest_journals_2479669346 |
source | JSTOR Archive Collection A-Z Listing |
subjects | Credit scoring Data Data mining Default Delinquency Economic crisis Economic statistics Equity Errors Financial institutions Foreclosure Government sponsored enterprises Home loans Housing prices Loan workouts Mortgage companies Mortgages Prepayments Subprime lending |
title | What Can We Learn from Past Mistakes? Lessons from Data Mining the Fannie Mae Mortgage Portfolio |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20Can%20We%20Learn%20from%20Past%20Mistakes?%20Lessons%20from%20Data%20Mining%20the%20Fannie%20Mae%20Mortgage%20Portfolio&rft.jtitle=The%20Journal%20of%20real%20estate%20research&rft.au=Mamonov,%20Stanislav&rft.date=2017-04-01&rft.volume=39&rft.issue=2&rft.spage=235&rft.epage=262&rft.pages=235-262&rft.issn=0896-5803&rft.eissn=2691-1175&rft_id=info:doi/10.1080/10835547.2017.12091471&rft_dat=%3Cjstor_proqu%3E26386715%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1910226424&rft_id=info:pmid/&rft_jstor_id=26386715&rfr_iscdi=true |