Taylor wavelet method for fractional delay differential equations
We present a new numerical method for solving fractional delay differential equations. The method is based on Taylor wavelets. We establish an exact formula to determine the Riemann–Liouville fractional integral of the Taylor wavelets. The exact formula is then applied to reduce the problem of solvi...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2021-01, Vol.37 (1), p.231-240 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | 1 |
container_start_page | 231 |
container_title | Engineering with computers |
container_volume | 37 |
creator | Toan, Phan Thanh Vo, Thieu N. Razzaghi, Mohsen |
description | We present a new numerical method for solving fractional delay differential equations. The method is based on Taylor wavelets. We establish an exact formula to determine the Riemann–Liouville fractional integral of the Taylor wavelets. The exact formula is then applied to reduce the problem of solving a fractional delay differential equation to the problem of solving a system of algebraic equations. Several numerical examples are presented to show the applicability and the effectiveness of this method. |
doi_str_mv | 10.1007/s00366-019-00818-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479577089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257967416</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-80265eaf0c0961b06d721ebe66b3caf189f15b9c0c93d58289a2c453b8d356453</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWKv_gKcFz9HJZvN1LMUvELzUc8hmJ7pl222TraX_vakreOtphjfvPYYfIbcM7hmAekgAXEoKzFAAzTTdn5EJq7igQkp-TibAlKIgpbokVyktARgHMBMyW7hD18di776xw6FY4fDVN0XIUojOD22_dl3RYOcORdOGgBHXQ5sl3O7c8ZquyUVwXcKbvzklH0-Pi_kLfXt_fp3P3qjnlRqohlIKdAE8GMlqkI0qGdYoZc29C0ybwERtPHjDG6FLbVzpK8Fr3XAh8zIld2PvJvbbHabBLvtdzN8lW1bKCKVAm5OuUigjVcVkdpWjy8c-pYjBbmK7cvFgGdgjUDsCtRmo_QVq9znEx1DK5vUnxv_qE6kfV9J4KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257967416</pqid></control><display><type>article</type><title>Taylor wavelet method for fractional delay differential equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Toan, Phan Thanh ; Vo, Thieu N. ; Razzaghi, Mohsen</creator><creatorcontrib>Toan, Phan Thanh ; Vo, Thieu N. ; Razzaghi, Mohsen</creatorcontrib><description>We present a new numerical method for solving fractional delay differential equations. The method is based on Taylor wavelets. We establish an exact formula to determine the Riemann–Liouville fractional integral of the Taylor wavelets. The exact formula is then applied to reduce the problem of solving a fractional delay differential equation to the problem of solving a system of algebraic equations. Several numerical examples are presented to show the applicability and the effectiveness of this method.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-019-00818-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Delay ; Differential equations ; Formulas (mathematics) ; Math. Applications in Chemistry ; Mathematical analysis ; Mathematical and Computational Engineering ; Numerical methods ; Original Article ; Systems Theory ; Wavelet analysis</subject><ispartof>Engineering with computers, 2021-01, Vol.37 (1), p.231-240</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-80265eaf0c0961b06d721ebe66b3caf189f15b9c0c93d58289a2c453b8d356453</citedby><cites>FETCH-LOGICAL-c347t-80265eaf0c0961b06d721ebe66b3caf189f15b9c0c93d58289a2c453b8d356453</cites><orcidid>0000-0002-2189-0802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-019-00818-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-019-00818-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Toan, Phan Thanh</creatorcontrib><creatorcontrib>Vo, Thieu N.</creatorcontrib><creatorcontrib>Razzaghi, Mohsen</creatorcontrib><title>Taylor wavelet method for fractional delay differential equations</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>We present a new numerical method for solving fractional delay differential equations. The method is based on Taylor wavelets. We establish an exact formula to determine the Riemann–Liouville fractional integral of the Taylor wavelets. The exact formula is then applied to reduce the problem of solving a fractional delay differential equation to the problem of solving a system of algebraic equations. Several numerical examples are presented to show the applicability and the effectiveness of this method.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Delay</subject><subject>Differential equations</subject><subject>Formulas (mathematics)</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Numerical methods</subject><subject>Original Article</subject><subject>Systems Theory</subject><subject>Wavelet analysis</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM1LAzEQxYMoWKv_gKcFz9HJZvN1LMUvELzUc8hmJ7pl222TraX_vakreOtphjfvPYYfIbcM7hmAekgAXEoKzFAAzTTdn5EJq7igQkp-TibAlKIgpbokVyktARgHMBMyW7hD18di776xw6FY4fDVN0XIUojOD22_dl3RYOcORdOGgBHXQ5sl3O7c8ZquyUVwXcKbvzklH0-Pi_kLfXt_fp3P3qjnlRqohlIKdAE8GMlqkI0qGdYoZc29C0ybwERtPHjDG6FLbVzpK8Fr3XAh8zIld2PvJvbbHabBLvtdzN8lW1bKCKVAm5OuUigjVcVkdpWjy8c-pYjBbmK7cvFgGdgjUDsCtRmo_QVq9znEx1DK5vUnxv_qE6kfV9J4KA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Toan, Phan Thanh</creator><creator>Vo, Thieu N.</creator><creator>Razzaghi, Mohsen</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2189-0802</orcidid></search><sort><creationdate>20210101</creationdate><title>Taylor wavelet method for fractional delay differential equations</title><author>Toan, Phan Thanh ; Vo, Thieu N. ; Razzaghi, Mohsen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-80265eaf0c0961b06d721ebe66b3caf189f15b9c0c93d58289a2c453b8d356453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Delay</topic><topic>Differential equations</topic><topic>Formulas (mathematics)</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Numerical methods</topic><topic>Original Article</topic><topic>Systems Theory</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toan, Phan Thanh</creatorcontrib><creatorcontrib>Vo, Thieu N.</creatorcontrib><creatorcontrib>Razzaghi, Mohsen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toan, Phan Thanh</au><au>Vo, Thieu N.</au><au>Razzaghi, Mohsen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taylor wavelet method for fractional delay differential equations</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>231</spage><epage>240</epage><pages>231-240</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>We present a new numerical method for solving fractional delay differential equations. The method is based on Taylor wavelets. We establish an exact formula to determine the Riemann–Liouville fractional integral of the Taylor wavelets. The exact formula is then applied to reduce the problem of solving a fractional delay differential equation to the problem of solving a system of algebraic equations. Several numerical examples are presented to show the applicability and the effectiveness of this method.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-019-00818-w</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2189-0802</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-0667 |
ispartof | Engineering with computers, 2021-01, Vol.37 (1), p.231-240 |
issn | 0177-0667 1435-5663 |
language | eng |
recordid | cdi_proquest_journals_2479577089 |
source | Springer Nature - Complete Springer Journals |
subjects | CAE) and Design Calculus of Variations and Optimal Control Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Delay Differential equations Formulas (mathematics) Math. Applications in Chemistry Mathematical analysis Mathematical and Computational Engineering Numerical methods Original Article Systems Theory Wavelet analysis |
title | Taylor wavelet method for fractional delay differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taylor%20wavelet%20method%20for%20fractional%20delay%20differential%20equations&rft.jtitle=Engineering%20with%20computers&rft.au=Toan,%20Phan%20Thanh&rft.date=2021-01-01&rft.volume=37&rft.issue=1&rft.spage=231&rft.epage=240&rft.pages=231-240&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-019-00818-w&rft_dat=%3Cproquest_cross%3E2257967416%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257967416&rft_id=info:pmid/&rfr_iscdi=true |