A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel

In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2021-01, Vol.37 (1), p.731-743
Hauptverfasser: Hosseininia, M., Heydari, M. H., Rouzegar, J., Cattani, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 743
container_issue 1
container_start_page 731
container_title Engineering with computers
container_volume 37
creator Hosseininia, M.
Heydari, M. H.
Rouzegar, J.
Cattani, C.
description In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the θ -weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.
doi_str_mv 10.1007/s00366-019-00852-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479576768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287812140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1947a19cc0d7bb97ab2a78a6b846f9e12c25260f5c0a6a266a7351b2e13aaf633</originalsourceid><addsrcrecordid>eNp9kU1O5DAQhS3ESDQ9c4FZWWJtKNuJnSwR_1IjNjNrq5IuN4Z0DHa6JXYsuMHccE5CmiCxY1WvSu99Uukx9lvCsQSwJxlAGyNA1gKgKpWo9thMFroUpTF6n81AWivAGHvADnN-AJAaoJ6xt1O-pnzfUc6jGO7jkg-R59htifex70JPmPgWU8CmIxHTkhIfwpq4T9gOIfbYcXXOE03b_9d_y-D9Jo-a0_MGd0ce-u1IDP2K34ZhwJVYkPfdSHqk1FP3k_3w2GX69Tnn7O_lxZ-za7G4u7o5O12IVhd2ELIuLMq6bWFpm6a22Ci0FZqmKoyvSapWlcqAL1tAg8oYtLqUjSKpEb3Res6OJu5Tis8byoN7iJs0fpCdKmxdWmNN9a1LVbaSShYwutTkalPMOZF3TymsMb04CW7XiZs6cWMn7qMTt0PrKZRHc7-i9IX-JvUOTbeRig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287812140</pqid></control><display><type>article</type><title>A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hosseininia, M. ; Heydari, M. H. ; Rouzegar, J. ; Cattani, C.</creator><creatorcontrib>Hosseininia, M. ; Heydari, M. H. ; Rouzegar, J. ; Cattani, C.</creatorcontrib><description>In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the θ -weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-019-00852-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Finite element method ; Kernels ; Math. Applications in Chemistry ; Mathematical analysis ; Mathematical and Computational Engineering ; Meshless methods ; Numerical methods ; Original Article ; Reaction-diffusion equations ; Recursive methods ; Series expansion ; Shape functions ; Substitution reactions ; Systems Theory</subject><ispartof>Engineering with computers, 2021-01, Vol.37 (1), p.731-743</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1947a19cc0d7bb97ab2a78a6b846f9e12c25260f5c0a6a266a7351b2e13aaf633</citedby><cites>FETCH-LOGICAL-c347t-1947a19cc0d7bb97ab2a78a6b846f9e12c25260f5c0a6a266a7351b2e13aaf633</cites><orcidid>0000-0001-6764-4394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-019-00852-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-019-00852-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hosseininia, M.</creatorcontrib><creatorcontrib>Heydari, M. H.</creatorcontrib><creatorcontrib>Rouzegar, J.</creatorcontrib><creatorcontrib>Cattani, C.</creatorcontrib><title>A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the θ -weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Finite element method</subject><subject>Kernels</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Meshless methods</subject><subject>Numerical methods</subject><subject>Original Article</subject><subject>Reaction-diffusion equations</subject><subject>Recursive methods</subject><subject>Series expansion</subject><subject>Shape functions</subject><subject>Substitution reactions</subject><subject>Systems Theory</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1O5DAQhS3ESDQ9c4FZWWJtKNuJnSwR_1IjNjNrq5IuN4Z0DHa6JXYsuMHccE5CmiCxY1WvSu99Uukx9lvCsQSwJxlAGyNA1gKgKpWo9thMFroUpTF6n81AWivAGHvADnN-AJAaoJ6xt1O-pnzfUc6jGO7jkg-R59htifex70JPmPgWU8CmIxHTkhIfwpq4T9gOIfbYcXXOE03b_9d_y-D9Jo-a0_MGd0ce-u1IDP2K34ZhwJVYkPfdSHqk1FP3k_3w2GX69Tnn7O_lxZ-za7G4u7o5O12IVhd2ELIuLMq6bWFpm6a22Ci0FZqmKoyvSapWlcqAL1tAg8oYtLqUjSKpEb3Res6OJu5Tis8byoN7iJs0fpCdKmxdWmNN9a1LVbaSShYwutTkalPMOZF3TymsMb04CW7XiZs6cWMn7qMTt0PrKZRHc7-i9IX-JvUOTbeRig</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hosseininia, M.</creator><creator>Heydari, M. H.</creator><creator>Rouzegar, J.</creator><creator>Cattani, C.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></search><sort><creationdate>20210101</creationdate><title>A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel</title><author>Hosseininia, M. ; Heydari, M. H. ; Rouzegar, J. ; Cattani, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1947a19cc0d7bb97ab2a78a6b846f9e12c25260f5c0a6a266a7351b2e13aaf633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Finite element method</topic><topic>Kernels</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Meshless methods</topic><topic>Numerical methods</topic><topic>Original Article</topic><topic>Reaction-diffusion equations</topic><topic>Recursive methods</topic><topic>Series expansion</topic><topic>Shape functions</topic><topic>Substitution reactions</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseininia, M.</creatorcontrib><creatorcontrib>Heydari, M. H.</creatorcontrib><creatorcontrib>Rouzegar, J.</creatorcontrib><creatorcontrib>Cattani, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseininia, M.</au><au>Heydari, M. H.</au><au>Rouzegar, J.</au><au>Cattani, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>731</spage><epage>743</epage><pages>731-743</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the θ -weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-019-00852-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0177-0667
ispartof Engineering with computers, 2021-01, Vol.37 (1), p.731-743
issn 0177-0667
1435-5663
language eng
recordid cdi_proquest_journals_2479576768
source SpringerLink Journals - AutoHoldings
subjects Algorithms
CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Classical Mechanics
Computer Science
Computer-Aided Engineering (CAD
Control
Finite element method
Kernels
Math. Applications in Chemistry
Mathematical analysis
Mathematical and Computational Engineering
Meshless methods
Numerical methods
Original Article
Reaction-diffusion equations
Recursive methods
Series expansion
Shape functions
Substitution reactions
Systems Theory
title A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20meshless%20method%20to%20solve%20nonlinear%20variable-order%20time%20fractional%202D%20reaction%E2%80%93diffusion%20equation%20involving%20Mittag-Leffler%20kernel&rft.jtitle=Engineering%20with%20computers&rft.au=Hosseininia,%20M.&rft.date=2021-01-01&rft.volume=37&rft.issue=1&rft.spage=731&rft.epage=743&rft.pages=731-743&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-019-00852-8&rft_dat=%3Cproquest_cross%3E2287812140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287812140&rft_id=info:pmid/&rfr_iscdi=true