A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel
In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Ca...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2021-01, Vol.37 (1), p.731-743 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 743 |
---|---|
container_issue | 1 |
container_start_page | 731 |
container_title | Engineering with computers |
container_volume | 37 |
creator | Hosseininia, M. Heydari, M. H. Rouzegar, J. Cattani, C. |
description | In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the
θ
-weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model. |
doi_str_mv | 10.1007/s00366-019-00852-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479576768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2287812140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-1947a19cc0d7bb97ab2a78a6b846f9e12c25260f5c0a6a266a7351b2e13aaf633</originalsourceid><addsrcrecordid>eNp9kU1O5DAQhS3ESDQ9c4FZWWJtKNuJnSwR_1IjNjNrq5IuN4Z0DHa6JXYsuMHccE5CmiCxY1WvSu99Uukx9lvCsQSwJxlAGyNA1gKgKpWo9thMFroUpTF6n81AWivAGHvADnN-AJAaoJ6xt1O-pnzfUc6jGO7jkg-R59htifex70JPmPgWU8CmIxHTkhIfwpq4T9gOIfbYcXXOE03b_9d_y-D9Jo-a0_MGd0ce-u1IDP2K34ZhwJVYkPfdSHqk1FP3k_3w2GX69Tnn7O_lxZ-za7G4u7o5O12IVhd2ELIuLMq6bWFpm6a22Ci0FZqmKoyvSapWlcqAL1tAg8oYtLqUjSKpEb3Res6OJu5Tis8byoN7iJs0fpCdKmxdWmNN9a1LVbaSShYwutTkalPMOZF3TymsMb04CW7XiZs6cWMn7qMTt0PrKZRHc7-i9IX-JvUOTbeRig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2287812140</pqid></control><display><type>article</type><title>A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hosseininia, M. ; Heydari, M. H. ; Rouzegar, J. ; Cattani, C.</creator><creatorcontrib>Hosseininia, M. ; Heydari, M. H. ; Rouzegar, J. ; Cattani, C.</creatorcontrib><description>In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the
θ
-weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-019-00852-8</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Classical Mechanics ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Finite element method ; Kernels ; Math. Applications in Chemistry ; Mathematical analysis ; Mathematical and Computational Engineering ; Meshless methods ; Numerical methods ; Original Article ; Reaction-diffusion equations ; Recursive methods ; Series expansion ; Shape functions ; Substitution reactions ; Systems Theory</subject><ispartof>Engineering with computers, 2021-01, Vol.37 (1), p.731-743</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Engineering with Computers is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-1947a19cc0d7bb97ab2a78a6b846f9e12c25260f5c0a6a266a7351b2e13aaf633</citedby><cites>FETCH-LOGICAL-c347t-1947a19cc0d7bb97ab2a78a6b846f9e12c25260f5c0a6a266a7351b2e13aaf633</cites><orcidid>0000-0001-6764-4394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-019-00852-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-019-00852-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hosseininia, M.</creatorcontrib><creatorcontrib>Heydari, M. H.</creatorcontrib><creatorcontrib>Rouzegar, J.</creatorcontrib><creatorcontrib>Cattani, C.</creatorcontrib><title>A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the
θ
-weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.</description><subject>Algorithms</subject><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Classical Mechanics</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Finite element method</subject><subject>Kernels</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Meshless methods</subject><subject>Numerical methods</subject><subject>Original Article</subject><subject>Reaction-diffusion equations</subject><subject>Recursive methods</subject><subject>Series expansion</subject><subject>Shape functions</subject><subject>Substitution reactions</subject><subject>Systems Theory</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1O5DAQhS3ESDQ9c4FZWWJtKNuJnSwR_1IjNjNrq5IuN4Z0DHa6JXYsuMHccE5CmiCxY1WvSu99Uukx9lvCsQSwJxlAGyNA1gKgKpWo9thMFroUpTF6n81AWivAGHvADnN-AJAaoJ6xt1O-pnzfUc6jGO7jkg-R59htifex70JPmPgWU8CmIxHTkhIfwpq4T9gOIfbYcXXOE03b_9d_y-D9Jo-a0_MGd0ce-u1IDP2K34ZhwJVYkPfdSHqk1FP3k_3w2GX69Tnn7O_lxZ-za7G4u7o5O12IVhd2ELIuLMq6bWFpm6a22Ci0FZqmKoyvSapWlcqAL1tAg8oYtLqUjSKpEb3Res6OJu5Tis8byoN7iJs0fpCdKmxdWmNN9a1LVbaSShYwutTkalPMOZF3TymsMb04CW7XiZs6cWMn7qMTt0PrKZRHc7-i9IX-JvUOTbeRig</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Hosseininia, M.</creator><creator>Heydari, M. H.</creator><creator>Rouzegar, J.</creator><creator>Cattani, C.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></search><sort><creationdate>20210101</creationdate><title>A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel</title><author>Hosseininia, M. ; Heydari, M. H. ; Rouzegar, J. ; Cattani, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-1947a19cc0d7bb97ab2a78a6b846f9e12c25260f5c0a6a266a7351b2e13aaf633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Classical Mechanics</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Finite element method</topic><topic>Kernels</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Meshless methods</topic><topic>Numerical methods</topic><topic>Original Article</topic><topic>Reaction-diffusion equations</topic><topic>Recursive methods</topic><topic>Series expansion</topic><topic>Shape functions</topic><topic>Substitution reactions</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hosseininia, M.</creatorcontrib><creatorcontrib>Heydari, M. H.</creatorcontrib><creatorcontrib>Rouzegar, J.</creatorcontrib><creatorcontrib>Cattani, C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hosseininia, M.</au><au>Heydari, M. H.</au><au>Rouzegar, J.</au><au>Cattani, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>37</volume><issue>1</issue><spage>731</spage><epage>743</epage><pages>731-743</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In this paper, an efficient and accurate meshless method based on the moving least squares (MLS) shape functions is developed to solve the generalized variable-order (V-O) time fractional nonlinear 2D reaction–diffusion equation. The V-O fractional derivative is considered in the Atangana–Baleanu–Caputo sense with Mittag-Leffler non-singular kernel. The numerical method is based on the following steps: First, the V-O fractional derivative is approximated by finite differences, and the
θ
-weighted method has been used to derive a recursive algorithm. Then, the solution of the problem is expanded by the MLS shape functions. Finally, by a substitution of this series expansion and corresponding its partial derivatives into the main equation, the problem is reduced to a linear system of algebraic equations to be solved at each time step. Several numerical examples are also given to illustrate the applicability, validity and accuracy of the presented method. The achieved numerical results reveal that the proposed method is highly accurate in solving the introduced V-O fractional model.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-019-00852-8</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6764-4394</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-0667 |
ispartof | Engineering with computers, 2021-01, Vol.37 (1), p.731-743 |
issn | 0177-0667 1435-5663 |
language | eng |
recordid | cdi_proquest_journals_2479576768 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms CAE) and Design Calculus of Variations and Optimal Control Optimization Classical Mechanics Computer Science Computer-Aided Engineering (CAD Control Finite element method Kernels Math. Applications in Chemistry Mathematical analysis Mathematical and Computational Engineering Meshless methods Numerical methods Original Article Reaction-diffusion equations Recursive methods Series expansion Shape functions Substitution reactions Systems Theory |
title | A meshless method to solve nonlinear variable-order time fractional 2D reaction–diffusion equation involving Mittag-Leffler kernel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20meshless%20method%20to%20solve%20nonlinear%20variable-order%20time%20fractional%202D%20reaction%E2%80%93diffusion%20equation%20involving%20Mittag-Leffler%20kernel&rft.jtitle=Engineering%20with%20computers&rft.au=Hosseininia,%20M.&rft.date=2021-01-01&rft.volume=37&rft.issue=1&rft.spage=731&rft.epage=743&rft.pages=731-743&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-019-00852-8&rft_dat=%3Cproquest_cross%3E2287812140%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2287812140&rft_id=info:pmid/&rfr_iscdi=true |