Cultivation of aerobic granular sludge for the treatment of food-processing wastewater and the impact on membrane filtration properties

A laboratory-scale sequencing batch reactor was operated for approximately 300 days, divided into four periods based on the feeding strategy, to develop stable aerobic granular sludge (AGS) while treating chocolate processing wastewater. Application of a prolonged mixed anaerobic feeding was not suf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2021-01, Vol.83 (1), p.39-51
Hauptverfasser: Stes, H, Caluwé, M, Dockx, L, Cornelissen, R, De Langhe, P, Smets, I, Dries, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 39
container_title Water science and technology
container_volume 83
creator Stes, H
Caluwé, M
Dockx, L
Cornelissen, R
De Langhe, P
Smets, I
Dries, J
description A laboratory-scale sequencing batch reactor was operated for approximately 300 days, divided into four periods based on the feeding strategy, to develop stable aerobic granular sludge (AGS) while treating chocolate processing wastewater. Application of a prolonged mixed anaerobic feeding was not sufficient to develop AGS and reach stable reactor performance. Through the application of a partially non-mixed and a partially mixed feeding strategy, the reactor performance was increased and stable AGS formation was established characterized by low diluted sludge volume index (D)SVI DSVI ) values of 78 ± 27 mL·g and 52 ± 17 mL·g , respectively, and a capillary suction time/mixed liquor suspended solids value of 0.9 sec·(g·L ) . The membrane bioreactor (MBR) filtration tests showed a reduction of the fouling rate (FR) and an increase of the sustainable flux (SF ) for AGS compared to flocs treating the same industrial wastewater. The SF (FR > 0.5 mbar·min ) for the flocs was 10 L·(m ·h) while for AGS the SF is higher than 45 L·(m ·h) because the FR did not exceed 0.1 mbar·min . Additionally, the AGS showed reduced irreversible fouling tendencies due to pore blocking. Our results underline the need for an increased substrate gradient during anaerobic feeding for the development and long-term maintenance of AGS under minimum wash-out conditions. The AGS-MBR filtration performance also shows strong advantages compared to a floccular MBR system due to a high increase of the SF and reduced reversible and irreversible fouling.
doi_str_mv 10.2166/wst.2020.531
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479501389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479501389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7b2870fd06788ca054d0902de967c7c4d7ea8ec0da217dc055e03c2cfee573993</originalsourceid><addsrcrecordid>eNo9kL1OwzAURi0EoqWwMSNLrKTc2EmcjKjiT6rEAnPk2DclVRIH26HiCXhtHFqY7nLu-aRDyGUMSxZn2e3O-SUDBsuUx0dkHhdFFhWCs2MyByZ4FDPGZ-TMuS0ACJ7AKZlxnmSQQDon36ux9c2n9I3pqampRGuqRtGNlf3YSktdO-oN0tpY6t-ReovSd9j7Ca6N0dFgjULnmn5Dd9J53EmPlspe__JNN0gV4J522FVBGlRN6-1-MPwOaH2D7pyc1LJ1eHG4C_L2cP-6eorWL4_Pq7t1pHgqfCQqlguoNWQiz5WENNFQANNYZEIJlWiBMkcFWrJYaAVpisAVUzViKnhR8AW53nvD9MeIzpdbM9o-TJYsEUUKMc8n6mZPKWucs1iXg206ab_KGMqpehmql1P1MlQP-NVBOlYd6n_4LzP_AbRIgMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479501389</pqid></control><display><type>article</type><title>Cultivation of aerobic granular sludge for the treatment of food-processing wastewater and the impact on membrane filtration properties</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Stes, H ; Caluwé, M ; Dockx, L ; Cornelissen, R ; De Langhe, P ; Smets, I ; Dries, J</creator><creatorcontrib>Stes, H ; Caluwé, M ; Dockx, L ; Cornelissen, R ; De Langhe, P ; Smets, I ; Dries, J</creatorcontrib><description>A laboratory-scale sequencing batch reactor was operated for approximately 300 days, divided into four periods based on the feeding strategy, to develop stable aerobic granular sludge (AGS) while treating chocolate processing wastewater. Application of a prolonged mixed anaerobic feeding was not sufficient to develop AGS and reach stable reactor performance. Through the application of a partially non-mixed and a partially mixed feeding strategy, the reactor performance was increased and stable AGS formation was established characterized by low diluted sludge volume index (D)SVI DSVI ) values of 78 ± 27 mL·g and 52 ± 17 mL·g , respectively, and a capillary suction time/mixed liquor suspended solids value of 0.9 sec·(g·L ) . The membrane bioreactor (MBR) filtration tests showed a reduction of the fouling rate (FR) and an increase of the sustainable flux (SF ) for AGS compared to flocs treating the same industrial wastewater. The SF (FR &gt; 0.5 mbar·min ) for the flocs was 10 L·(m ·h) while for AGS the SF is higher than 45 L·(m ·h) because the FR did not exceed 0.1 mbar·min . Additionally, the AGS showed reduced irreversible fouling tendencies due to pore blocking. Our results underline the need for an increased substrate gradient during anaerobic feeding for the development and long-term maintenance of AGS under minimum wash-out conditions. The AGS-MBR filtration performance also shows strong advantages compared to a floccular MBR system due to a high increase of the SF and reduced reversible and irreversible fouling.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2020.531</identifier><identifier>PMID: 33460405</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Anaerobic processes ; Batch reactors ; Bioreactors ; Chemical oxygen demand ; Chocolate ; Cultivation ; Effluents ; Experiments ; Famine ; Feeding ; Filtration ; Food industries wastewaters ; Food processing ; Fouling ; Hydraulics ; Industrial wastes ; Industrial wastewater ; Laboratories ; Membrane filtration ; Membranes ; Membranes, Artificial ; Nutrient removal ; Particle size ; Process controls ; Reactors ; Sewage ; Sludge ; Sludge volume index ; Solid suspensions ; Substrates ; Suction ; Suspended particulate matter ; Suspended solids ; Waste Disposal, Fluid ; Waste Water ; Wastewater ; Wastewater treatment ; Water treatment</subject><ispartof>Water science and technology, 2021-01, Vol.83 (1), p.39-51</ispartof><rights>Copyright IWA Publishing Jan 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7b2870fd06788ca054d0902de967c7c4d7ea8ec0da217dc055e03c2cfee573993</citedby><cites>FETCH-LOGICAL-c357t-7b2870fd06788ca054d0902de967c7c4d7ea8ec0da217dc055e03c2cfee573993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33460405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stes, H</creatorcontrib><creatorcontrib>Caluwé, M</creatorcontrib><creatorcontrib>Dockx, L</creatorcontrib><creatorcontrib>Cornelissen, R</creatorcontrib><creatorcontrib>De Langhe, P</creatorcontrib><creatorcontrib>Smets, I</creatorcontrib><creatorcontrib>Dries, J</creatorcontrib><title>Cultivation of aerobic granular sludge for the treatment of food-processing wastewater and the impact on membrane filtration properties</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>A laboratory-scale sequencing batch reactor was operated for approximately 300 days, divided into four periods based on the feeding strategy, to develop stable aerobic granular sludge (AGS) while treating chocolate processing wastewater. Application of a prolonged mixed anaerobic feeding was not sufficient to develop AGS and reach stable reactor performance. Through the application of a partially non-mixed and a partially mixed feeding strategy, the reactor performance was increased and stable AGS formation was established characterized by low diluted sludge volume index (D)SVI DSVI ) values of 78 ± 27 mL·g and 52 ± 17 mL·g , respectively, and a capillary suction time/mixed liquor suspended solids value of 0.9 sec·(g·L ) . The membrane bioreactor (MBR) filtration tests showed a reduction of the fouling rate (FR) and an increase of the sustainable flux (SF ) for AGS compared to flocs treating the same industrial wastewater. The SF (FR &gt; 0.5 mbar·min ) for the flocs was 10 L·(m ·h) while for AGS the SF is higher than 45 L·(m ·h) because the FR did not exceed 0.1 mbar·min . Additionally, the AGS showed reduced irreversible fouling tendencies due to pore blocking. Our results underline the need for an increased substrate gradient during anaerobic feeding for the development and long-term maintenance of AGS under minimum wash-out conditions. The AGS-MBR filtration performance also shows strong advantages compared to a floccular MBR system due to a high increase of the SF and reduced reversible and irreversible fouling.</description><subject>Anaerobic processes</subject><subject>Batch reactors</subject><subject>Bioreactors</subject><subject>Chemical oxygen demand</subject><subject>Chocolate</subject><subject>Cultivation</subject><subject>Effluents</subject><subject>Experiments</subject><subject>Famine</subject><subject>Feeding</subject><subject>Filtration</subject><subject>Food industries wastewaters</subject><subject>Food processing</subject><subject>Fouling</subject><subject>Hydraulics</subject><subject>Industrial wastes</subject><subject>Industrial wastewater</subject><subject>Laboratories</subject><subject>Membrane filtration</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nutrient removal</subject><subject>Particle size</subject><subject>Process controls</subject><subject>Reactors</subject><subject>Sewage</subject><subject>Sludge</subject><subject>Sludge volume index</subject><subject>Solid suspensions</subject><subject>Substrates</subject><subject>Suction</subject><subject>Suspended particulate matter</subject><subject>Suspended solids</subject><subject>Waste Disposal, Fluid</subject><subject>Waste Water</subject><subject>Wastewater</subject><subject>Wastewater treatment</subject><subject>Water treatment</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNo9kL1OwzAURi0EoqWwMSNLrKTc2EmcjKjiT6rEAnPk2DclVRIH26HiCXhtHFqY7nLu-aRDyGUMSxZn2e3O-SUDBsuUx0dkHhdFFhWCs2MyByZ4FDPGZ-TMuS0ACJ7AKZlxnmSQQDon36ux9c2n9I3pqampRGuqRtGNlf3YSktdO-oN0tpY6t-ReovSd9j7Ca6N0dFgjULnmn5Dd9J53EmPlspe__JNN0gV4J522FVBGlRN6-1-MPwOaH2D7pyc1LJ1eHG4C_L2cP-6eorWL4_Pq7t1pHgqfCQqlguoNWQiz5WENNFQANNYZEIJlWiBMkcFWrJYaAVpisAVUzViKnhR8AW53nvD9MeIzpdbM9o-TJYsEUUKMc8n6mZPKWucs1iXg206ab_KGMqpehmql1P1MlQP-NVBOlYd6n_4LzP_AbRIgMo</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Stes, H</creator><creator>Caluwé, M</creator><creator>Dockx, L</creator><creator>Cornelissen, R</creator><creator>De Langhe, P</creator><creator>Smets, I</creator><creator>Dries, J</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>202101</creationdate><title>Cultivation of aerobic granular sludge for the treatment of food-processing wastewater and the impact on membrane filtration properties</title><author>Stes, H ; Caluwé, M ; Dockx, L ; Cornelissen, R ; De Langhe, P ; Smets, I ; Dries, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7b2870fd06788ca054d0902de967c7c4d7ea8ec0da217dc055e03c2cfee573993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anaerobic processes</topic><topic>Batch reactors</topic><topic>Bioreactors</topic><topic>Chemical oxygen demand</topic><topic>Chocolate</topic><topic>Cultivation</topic><topic>Effluents</topic><topic>Experiments</topic><topic>Famine</topic><topic>Feeding</topic><topic>Filtration</topic><topic>Food industries wastewaters</topic><topic>Food processing</topic><topic>Fouling</topic><topic>Hydraulics</topic><topic>Industrial wastes</topic><topic>Industrial wastewater</topic><topic>Laboratories</topic><topic>Membrane filtration</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nutrient removal</topic><topic>Particle size</topic><topic>Process controls</topic><topic>Reactors</topic><topic>Sewage</topic><topic>Sludge</topic><topic>Sludge volume index</topic><topic>Solid suspensions</topic><topic>Substrates</topic><topic>Suction</topic><topic>Suspended particulate matter</topic><topic>Suspended solids</topic><topic>Waste Disposal, Fluid</topic><topic>Waste Water</topic><topic>Wastewater</topic><topic>Wastewater treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stes, H</creatorcontrib><creatorcontrib>Caluwé, M</creatorcontrib><creatorcontrib>Dockx, L</creatorcontrib><creatorcontrib>Cornelissen, R</creatorcontrib><creatorcontrib>De Langhe, P</creatorcontrib><creatorcontrib>Smets, I</creatorcontrib><creatorcontrib>Dries, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stes, H</au><au>Caluwé, M</au><au>Dockx, L</au><au>Cornelissen, R</au><au>De Langhe, P</au><au>Smets, I</au><au>Dries, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cultivation of aerobic granular sludge for the treatment of food-processing wastewater and the impact on membrane filtration properties</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2021-01</date><risdate>2021</risdate><volume>83</volume><issue>1</issue><spage>39</spage><epage>51</epage><pages>39-51</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>A laboratory-scale sequencing batch reactor was operated for approximately 300 days, divided into four periods based on the feeding strategy, to develop stable aerobic granular sludge (AGS) while treating chocolate processing wastewater. Application of a prolonged mixed anaerobic feeding was not sufficient to develop AGS and reach stable reactor performance. Through the application of a partially non-mixed and a partially mixed feeding strategy, the reactor performance was increased and stable AGS formation was established characterized by low diluted sludge volume index (D)SVI DSVI ) values of 78 ± 27 mL·g and 52 ± 17 mL·g , respectively, and a capillary suction time/mixed liquor suspended solids value of 0.9 sec·(g·L ) . The membrane bioreactor (MBR) filtration tests showed a reduction of the fouling rate (FR) and an increase of the sustainable flux (SF ) for AGS compared to flocs treating the same industrial wastewater. The SF (FR &gt; 0.5 mbar·min ) for the flocs was 10 L·(m ·h) while for AGS the SF is higher than 45 L·(m ·h) because the FR did not exceed 0.1 mbar·min . Additionally, the AGS showed reduced irreversible fouling tendencies due to pore blocking. Our results underline the need for an increased substrate gradient during anaerobic feeding for the development and long-term maintenance of AGS under minimum wash-out conditions. The AGS-MBR filtration performance also shows strong advantages compared to a floccular MBR system due to a high increase of the SF and reduced reversible and irreversible fouling.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>33460405</pmid><doi>10.2166/wst.2020.531</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2021-01, Vol.83 (1), p.39-51
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_journals_2479501389
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Anaerobic processes
Batch reactors
Bioreactors
Chemical oxygen demand
Chocolate
Cultivation
Effluents
Experiments
Famine
Feeding
Filtration
Food industries wastewaters
Food processing
Fouling
Hydraulics
Industrial wastes
Industrial wastewater
Laboratories
Membrane filtration
Membranes
Membranes, Artificial
Nutrient removal
Particle size
Process controls
Reactors
Sewage
Sludge
Sludge volume index
Solid suspensions
Substrates
Suction
Suspended particulate matter
Suspended solids
Waste Disposal, Fluid
Waste Water
Wastewater
Wastewater treatment
Water treatment
title Cultivation of aerobic granular sludge for the treatment of food-processing wastewater and the impact on membrane filtration properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cultivation%20of%20aerobic%20granular%20sludge%20for%20the%20treatment%20of%20food-processing%20wastewater%20and%20the%20impact%20on%20membrane%20filtration%20properties&rft.jtitle=Water%20science%20and%20technology&rft.au=Stes,%20H&rft.date=2021-01&rft.volume=83&rft.issue=1&rft.spage=39&rft.epage=51&rft.pages=39-51&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2020.531&rft_dat=%3Cproquest_cross%3E2479501389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479501389&rft_id=info:pmid/33460405&rfr_iscdi=true