Microplasma ball reactor for JP-8 liquid hydrocarbon conversion to lighter fuels

•A microplasma ball reactor is used to convert the JP-8 into the gaseous products.•Study of produced gases by JP-8 processing with specific energy input is discussed.•The gas product yields were analyzed and compared with other processes.•The nano-sec pulses and controlled energy per pulse are the k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2021-02, Vol.285, p.118943, Article 118943
Hauptverfasser: Rathore, Kavita, Bhuiyan, Shariful Islam, Slavens, Stephen Manson, Staack, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118943
container_title Fuel (Guildford)
container_volume 285
creator Rathore, Kavita
Bhuiyan, Shariful Islam
Slavens, Stephen Manson
Staack, David
description •A microplasma ball reactor is used to convert the JP-8 into the gaseous products.•Study of produced gases by JP-8 processing with specific energy input is discussed.•The gas product yields were analyzed and compared with other processes.•The nano-sec pulses and controlled energy per pulse are the key features of reactor. Non-equilibrium microplasma technology is used as a non-conventional processing tool to attain fuel conversion efficiency. The microplasma was generated in a reactor with metal balls bouncing between parallel electrodes allowing energy control in a discharge. The released energy, in the range of 20–100 μJ per discharge initiates chain scission reactions to generate shorter chain hydrocarbons. The system consists of 300 reactors and is scaled and optimized to maximize power density while maintaining high efficiency for applications to Jet Propellant 8 (JP-8) fuel. Experiments demonstrate the ability of controlled chemistry (JP-8 to lighter hydrocarbons fuel conversion) without allowing excessive heat and carbon production. Analysis of gas products produced by JP-8 processing with specific energy input of 1450 kJ/kg demonstrates product distributions of 20.9%, 39.4%, 31.7%, 2.5%, 3.5% 1.3% by mass of H2, CH4, C2H4, C2H6, C3H6, C3H8 respectively and is 1.64% of the initial JP-8 mass (24 g). Soot production is only 0.07% of the JP-8 mass that results in a 35:1 product selectivity of gaseous compounds to soot. Calculated gas product yields of 11.7, 2.2, 0.99, 0.07, 0.07 and 0.02 molecules/100 eV for H2, CH4, C2H4, C2H6, C3H6, C3H8 respectively were observed and are generally higher than existing non-equilibrium processing technology.
doi_str_mv 10.1016/j.fuel.2020.118943
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479481519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120319396</els_id><sourcerecordid>2479481519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-41fb1fc1f7258ba95685924faabd24d882c6b5aa4d71d1ccd17cf043b5d40c483</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEOcXr2IkjcUEVTxXRA5wtxw_qKI1bO6nUv8dVOHNY7Wo1szszCN0CXgCG8r5d2NF0C4JJWgCvaXGGZsCrIq-AFedohhMqJ0UJl-gqxhZjXHFGZ2j94VTwu07Grcwa2XVZMFINPmQ21fs651nn9qPT2eaog1cyNL7PlO8PJkSXxsEnwM9mMImRJMRrdGFlF83NX5-j7-enr-Vrvvp8eVs-rnJVED7kFGwDVoGtCOONrFnJWU2olbLRhGrOiSobJiXVFWhQSkOlLKZFwzTFivJiju6mu7vg96OJg2j9GPr0UhBa1ZQDgzqhyIRKJmMMxopdcFsZjgKwOCUnWnGSLU7JiSm5RHqYSMmOOTgTRFTO9MpoF4wahPbuP_ovDSB3WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479481519</pqid></control><display><type>article</type><title>Microplasma ball reactor for JP-8 liquid hydrocarbon conversion to lighter fuels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rathore, Kavita ; Bhuiyan, Shariful Islam ; Slavens, Stephen Manson ; Staack, David</creator><creatorcontrib>Rathore, Kavita ; Bhuiyan, Shariful Islam ; Slavens, Stephen Manson ; Staack, David</creatorcontrib><description>•A microplasma ball reactor is used to convert the JP-8 into the gaseous products.•Study of produced gases by JP-8 processing with specific energy input is discussed.•The gas product yields were analyzed and compared with other processes.•The nano-sec pulses and controlled energy per pulse are the key features of reactor. Non-equilibrium microplasma technology is used as a non-conventional processing tool to attain fuel conversion efficiency. The microplasma was generated in a reactor with metal balls bouncing between parallel electrodes allowing energy control in a discharge. The released energy, in the range of 20–100 μJ per discharge initiates chain scission reactions to generate shorter chain hydrocarbons. The system consists of 300 reactors and is scaled and optimized to maximize power density while maintaining high efficiency for applications to Jet Propellant 8 (JP-8) fuel. Experiments demonstrate the ability of controlled chemistry (JP-8 to lighter hydrocarbons fuel conversion) without allowing excessive heat and carbon production. Analysis of gas products produced by JP-8 processing with specific energy input of 1450 kJ/kg demonstrates product distributions of 20.9%, 39.4%, 31.7%, 2.5%, 3.5% 1.3% by mass of H2, CH4, C2H4, C2H6, C3H6, C3H8 respectively and is 1.64% of the initial JP-8 mass (24 g). Soot production is only 0.07% of the JP-8 mass that results in a 35:1 product selectivity of gaseous compounds to soot. Calculated gas product yields of 11.7, 2.2, 0.99, 0.07, 0.07 and 0.02 molecules/100 eV for H2, CH4, C2H4, C2H6, C3H6, C3H8 respectively were observed and are generally higher than existing non-equilibrium processing technology.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.118943</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Chain scission ; Chains ; Discharge ; Discharge in liquids ; Energy ; Energy conversion efficiency ; Fuels ; Hydrocarbons ; Liquid hydrocarbon ; Methane ; Microdischarges ; Microplasmas ; Non-thermal plasma, fuel, reforming ; Nuclear fuels ; Reactors ; Selectivity ; Soot ; Technology</subject><ispartof>Fuel (Guildford), 2021-02, Vol.285, p.118943, Article 118943</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-41fb1fc1f7258ba95685924faabd24d882c6b5aa4d71d1ccd17cf043b5d40c483</citedby><cites>FETCH-LOGICAL-c328t-41fb1fc1f7258ba95685924faabd24d882c6b5aa4d71d1ccd17cf043b5d40c483</cites><orcidid>0000-0002-5399-4112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2020.118943$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rathore, Kavita</creatorcontrib><creatorcontrib>Bhuiyan, Shariful Islam</creatorcontrib><creatorcontrib>Slavens, Stephen Manson</creatorcontrib><creatorcontrib>Staack, David</creatorcontrib><title>Microplasma ball reactor for JP-8 liquid hydrocarbon conversion to lighter fuels</title><title>Fuel (Guildford)</title><description>•A microplasma ball reactor is used to convert the JP-8 into the gaseous products.•Study of produced gases by JP-8 processing with specific energy input is discussed.•The gas product yields were analyzed and compared with other processes.•The nano-sec pulses and controlled energy per pulse are the key features of reactor. Non-equilibrium microplasma technology is used as a non-conventional processing tool to attain fuel conversion efficiency. The microplasma was generated in a reactor with metal balls bouncing between parallel electrodes allowing energy control in a discharge. The released energy, in the range of 20–100 μJ per discharge initiates chain scission reactions to generate shorter chain hydrocarbons. The system consists of 300 reactors and is scaled and optimized to maximize power density while maintaining high efficiency for applications to Jet Propellant 8 (JP-8) fuel. Experiments demonstrate the ability of controlled chemistry (JP-8 to lighter hydrocarbons fuel conversion) without allowing excessive heat and carbon production. Analysis of gas products produced by JP-8 processing with specific energy input of 1450 kJ/kg demonstrates product distributions of 20.9%, 39.4%, 31.7%, 2.5%, 3.5% 1.3% by mass of H2, CH4, C2H4, C2H6, C3H6, C3H8 respectively and is 1.64% of the initial JP-8 mass (24 g). Soot production is only 0.07% of the JP-8 mass that results in a 35:1 product selectivity of gaseous compounds to soot. Calculated gas product yields of 11.7, 2.2, 0.99, 0.07, 0.07 and 0.02 molecules/100 eV for H2, CH4, C2H4, C2H6, C3H6, C3H8 respectively were observed and are generally higher than existing non-equilibrium processing technology.</description><subject>Chain scission</subject><subject>Chains</subject><subject>Discharge</subject><subject>Discharge in liquids</subject><subject>Energy</subject><subject>Energy conversion efficiency</subject><subject>Fuels</subject><subject>Hydrocarbons</subject><subject>Liquid hydrocarbon</subject><subject>Methane</subject><subject>Microdischarges</subject><subject>Microplasmas</subject><subject>Non-thermal plasma, fuel, reforming</subject><subject>Nuclear fuels</subject><subject>Reactors</subject><subject>Selectivity</subject><subject>Soot</subject><subject>Technology</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcIrEOcXr2IkjcUEVTxXRA5wtxw_qKI1bO6nUv8dVOHNY7Wo1szszCN0CXgCG8r5d2NF0C4JJWgCvaXGGZsCrIq-AFedohhMqJ0UJl-gqxhZjXHFGZ2j94VTwu07Grcwa2XVZMFINPmQ21fs651nn9qPT2eaog1cyNL7PlO8PJkSXxsEnwM9mMImRJMRrdGFlF83NX5-j7-enr-Vrvvp8eVs-rnJVED7kFGwDVoGtCOONrFnJWU2olbLRhGrOiSobJiXVFWhQSkOlLKZFwzTFivJiju6mu7vg96OJg2j9GPr0UhBa1ZQDgzqhyIRKJmMMxopdcFsZjgKwOCUnWnGSLU7JiSm5RHqYSMmOOTgTRFTO9MpoF4wahPbuP_ovDSB3WA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Rathore, Kavita</creator><creator>Bhuiyan, Shariful Islam</creator><creator>Slavens, Stephen Manson</creator><creator>Staack, David</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-5399-4112</orcidid></search><sort><creationdate>20210201</creationdate><title>Microplasma ball reactor for JP-8 liquid hydrocarbon conversion to lighter fuels</title><author>Rathore, Kavita ; Bhuiyan, Shariful Islam ; Slavens, Stephen Manson ; Staack, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-41fb1fc1f7258ba95685924faabd24d882c6b5aa4d71d1ccd17cf043b5d40c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chain scission</topic><topic>Chains</topic><topic>Discharge</topic><topic>Discharge in liquids</topic><topic>Energy</topic><topic>Energy conversion efficiency</topic><topic>Fuels</topic><topic>Hydrocarbons</topic><topic>Liquid hydrocarbon</topic><topic>Methane</topic><topic>Microdischarges</topic><topic>Microplasmas</topic><topic>Non-thermal plasma, fuel, reforming</topic><topic>Nuclear fuels</topic><topic>Reactors</topic><topic>Selectivity</topic><topic>Soot</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rathore, Kavita</creatorcontrib><creatorcontrib>Bhuiyan, Shariful Islam</creatorcontrib><creatorcontrib>Slavens, Stephen Manson</creatorcontrib><creatorcontrib>Staack, David</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rathore, Kavita</au><au>Bhuiyan, Shariful Islam</au><au>Slavens, Stephen Manson</au><au>Staack, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microplasma ball reactor for JP-8 liquid hydrocarbon conversion to lighter fuels</atitle><jtitle>Fuel (Guildford)</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>285</volume><spage>118943</spage><pages>118943-</pages><artnum>118943</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•A microplasma ball reactor is used to convert the JP-8 into the gaseous products.•Study of produced gases by JP-8 processing with specific energy input is discussed.•The gas product yields were analyzed and compared with other processes.•The nano-sec pulses and controlled energy per pulse are the key features of reactor. Non-equilibrium microplasma technology is used as a non-conventional processing tool to attain fuel conversion efficiency. The microplasma was generated in a reactor with metal balls bouncing between parallel electrodes allowing energy control in a discharge. The released energy, in the range of 20–100 μJ per discharge initiates chain scission reactions to generate shorter chain hydrocarbons. The system consists of 300 reactors and is scaled and optimized to maximize power density while maintaining high efficiency for applications to Jet Propellant 8 (JP-8) fuel. Experiments demonstrate the ability of controlled chemistry (JP-8 to lighter hydrocarbons fuel conversion) without allowing excessive heat and carbon production. Analysis of gas products produced by JP-8 processing with specific energy input of 1450 kJ/kg demonstrates product distributions of 20.9%, 39.4%, 31.7%, 2.5%, 3.5% 1.3% by mass of H2, CH4, C2H4, C2H6, C3H6, C3H8 respectively and is 1.64% of the initial JP-8 mass (24 g). Soot production is only 0.07% of the JP-8 mass that results in a 35:1 product selectivity of gaseous compounds to soot. Calculated gas product yields of 11.7, 2.2, 0.99, 0.07, 0.07 and 0.02 molecules/100 eV for H2, CH4, C2H4, C2H6, C3H6, C3H8 respectively were observed and are generally higher than existing non-equilibrium processing technology.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.118943</doi><orcidid>https://orcid.org/0000-0002-5399-4112</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2021-02, Vol.285, p.118943, Article 118943
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2479481519
source Access via ScienceDirect (Elsevier)
subjects Chain scission
Chains
Discharge
Discharge in liquids
Energy
Energy conversion efficiency
Fuels
Hydrocarbons
Liquid hydrocarbon
Methane
Microdischarges
Microplasmas
Non-thermal plasma, fuel, reforming
Nuclear fuels
Reactors
Selectivity
Soot
Technology
title Microplasma ball reactor for JP-8 liquid hydrocarbon conversion to lighter fuels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microplasma%20ball%20reactor%20for%20JP-8%20liquid%20hydrocarbon%20conversion%20to%20lighter%20fuels&rft.jtitle=Fuel%20(Guildford)&rft.au=Rathore,%20Kavita&rft.date=2021-02-01&rft.volume=285&rft.spage=118943&rft.pages=118943-&rft.artnum=118943&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.118943&rft_dat=%3Cproquest_cross%3E2479481519%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479481519&rft_id=info:pmid/&rft_els_id=S0016236120319396&rfr_iscdi=true