A new rank metric for convolutional codes
Let F [ D ] be the polynomial ring with entries in a finite field F . Convolutional codes are submodules of F [ D ] n that can be described by left prime polynomial matrices. In the last decade there has been a great interest in convolutional codes equipped with a rank metric, called sum rank metric...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2021, Vol.89 (1), p.53-73 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Designs, codes, and cryptography |
container_volume | 89 |
creator | Almeida, P. Napp, D. |
description | Let
F
[
D
]
be the polynomial ring with entries in a finite field
F
. Convolutional codes are submodules of
F
[
D
]
n
that can be described by left prime polynomial matrices. In the last decade there has been a great interest in convolutional codes equipped with a rank metric, called sum rank metric, due to their wide range of applications in reliable linear network coding. However, this metric suits only for delay free networks. In this work we continue this thread of research and introduce a new metric that overcomes this restriction and therefore is suitable to handle more general networks. We study this metric and provide characterizations of the distance properties in terms of the polynomial matrix representations of the convolutional code. Convolutional codes that are optimal with respect to this new metric are investigated and concrete constructions are presented. These codes are the analogs of Maximum Distance Profile convolutional codes in the context of network coding. Moreover, we show that they can be built upon a class of superregular matrices, with entries in an extension field, that preserve their superregularity properties even after multiplication with some matrices with entries in the ground field. |
doi_str_mv | 10.1007/s10623-020-00808-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479468230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479468230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-f86ba37d9d0486d35a00c6f98887b0bdba26abef83ac5252b7ca94c436b8e0663</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEf_gKuCKxfRl6T5Wg6DjsKAG12HJE2lY6cZk47Ff2-1gjtXjwv3XB4HoUsCNwRA3mYCgjIMFDCAAoXHI1QQLhmWXIljVICmHBOg9BSd5bwFAMKAFuh6WfZhLJPt38pdGFLryyam0sf-I3aHoY297aZUh3yOThrb5XDxexfo5f7uefWAN0_rx9Vygz1TesCNEs4yWesaKiVqxi2AF41WSkkHrnaWCutCo5j1nHLqpLe68hUTTgUQgi3Q1by7T_H9EPJgtvGQpjeyoZXUlVCUwdSic8unmHMKjdmndmfTpyFgvpWYWYmZlJgfJWacIDZDeSr3ryH9Tf9DfQHdoGMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479468230</pqid></control><display><type>article</type><title>A new rank metric for convolutional codes</title><source>Springer Nature - Complete Springer Journals</source><creator>Almeida, P. ; Napp, D.</creator><creatorcontrib>Almeida, P. ; Napp, D.</creatorcontrib><description>Let
F
[
D
]
be the polynomial ring with entries in a finite field
F
. Convolutional codes are submodules of
F
[
D
]
n
that can be described by left prime polynomial matrices. In the last decade there has been a great interest in convolutional codes equipped with a rank metric, called sum rank metric, due to their wide range of applications in reliable linear network coding. However, this metric suits only for delay free networks. In this work we continue this thread of research and introduce a new metric that overcomes this restriction and therefore is suitable to handle more general networks. We study this metric and provide characterizations of the distance properties in terms of the polynomial matrix representations of the convolutional code. Convolutional codes that are optimal with respect to this new metric are investigated and concrete constructions are presented. These codes are the analogs of Maximum Distance Profile convolutional codes in the context of network coding. Moreover, we show that they can be built upon a class of superregular matrices, with entries in an extension field, that preserve their superregularity properties even after multiplication with some matrices with entries in the ground field.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-020-00808-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Codes ; Coding ; Coding and Information Theory ; Computer Science ; Convolutional codes ; Cryptology ; Discrete Mathematics in Computer Science ; Fields (mathematics) ; Matrix representation ; Multiplication ; Polynomial matrices ; Rings (mathematics)</subject><ispartof>Designs, codes, and cryptography, 2021, Vol.89 (1), p.53-73</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-f86ba37d9d0486d35a00c6f98887b0bdba26abef83ac5252b7ca94c436b8e0663</citedby><cites>FETCH-LOGICAL-c389t-f86ba37d9d0486d35a00c6f98887b0bdba26abef83ac5252b7ca94c436b8e0663</cites><orcidid>0000-0003-2303-9824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-020-00808-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-020-00808-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Almeida, P.</creatorcontrib><creatorcontrib>Napp, D.</creatorcontrib><title>A new rank metric for convolutional codes</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Let
F
[
D
]
be the polynomial ring with entries in a finite field
F
. Convolutional codes are submodules of
F
[
D
]
n
that can be described by left prime polynomial matrices. In the last decade there has been a great interest in convolutional codes equipped with a rank metric, called sum rank metric, due to their wide range of applications in reliable linear network coding. However, this metric suits only for delay free networks. In this work we continue this thread of research and introduce a new metric that overcomes this restriction and therefore is suitable to handle more general networks. We study this metric and provide characterizations of the distance properties in terms of the polynomial matrix representations of the convolutional code. Convolutional codes that are optimal with respect to this new metric are investigated and concrete constructions are presented. These codes are the analogs of Maximum Distance Profile convolutional codes in the context of network coding. Moreover, we show that they can be built upon a class of superregular matrices, with entries in an extension field, that preserve their superregularity properties even after multiplication with some matrices with entries in the ground field.</description><subject>Codes</subject><subject>Coding</subject><subject>Coding and Information Theory</subject><subject>Computer Science</subject><subject>Convolutional codes</subject><subject>Cryptology</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Fields (mathematics)</subject><subject>Matrix representation</subject><subject>Multiplication</subject><subject>Polynomial matrices</subject><subject>Rings (mathematics)</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEf_gKuCKxfRl6T5Wg6DjsKAG12HJE2lY6cZk47Ff2-1gjtXjwv3XB4HoUsCNwRA3mYCgjIMFDCAAoXHI1QQLhmWXIljVICmHBOg9BSd5bwFAMKAFuh6WfZhLJPt38pdGFLryyam0sf-I3aHoY297aZUh3yOThrb5XDxexfo5f7uefWAN0_rx9Vygz1TesCNEs4yWesaKiVqxi2AF41WSkkHrnaWCutCo5j1nHLqpLe68hUTTgUQgi3Q1by7T_H9EPJgtvGQpjeyoZXUlVCUwdSic8unmHMKjdmndmfTpyFgvpWYWYmZlJgfJWacIDZDeSr3ryH9Tf9DfQHdoGMw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Almeida, P.</creator><creator>Napp, D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2303-9824</orcidid></search><sort><creationdate>2021</creationdate><title>A new rank metric for convolutional codes</title><author>Almeida, P. ; Napp, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-f86ba37d9d0486d35a00c6f98887b0bdba26abef83ac5252b7ca94c436b8e0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Codes</topic><topic>Coding</topic><topic>Coding and Information Theory</topic><topic>Computer Science</topic><topic>Convolutional codes</topic><topic>Cryptology</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Fields (mathematics)</topic><topic>Matrix representation</topic><topic>Multiplication</topic><topic>Polynomial matrices</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almeida, P.</creatorcontrib><creatorcontrib>Napp, D.</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almeida, P.</au><au>Napp, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new rank metric for convolutional codes</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2021</date><risdate>2021</risdate><volume>89</volume><issue>1</issue><spage>53</spage><epage>73</epage><pages>53-73</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Let
F
[
D
]
be the polynomial ring with entries in a finite field
F
. Convolutional codes are submodules of
F
[
D
]
n
that can be described by left prime polynomial matrices. In the last decade there has been a great interest in convolutional codes equipped with a rank metric, called sum rank metric, due to their wide range of applications in reliable linear network coding. However, this metric suits only for delay free networks. In this work we continue this thread of research and introduce a new metric that overcomes this restriction and therefore is suitable to handle more general networks. We study this metric and provide characterizations of the distance properties in terms of the polynomial matrix representations of the convolutional code. Convolutional codes that are optimal with respect to this new metric are investigated and concrete constructions are presented. These codes are the analogs of Maximum Distance Profile convolutional codes in the context of network coding. Moreover, we show that they can be built upon a class of superregular matrices, with entries in an extension field, that preserve their superregularity properties even after multiplication with some matrices with entries in the ground field.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-020-00808-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-2303-9824</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-1022 |
ispartof | Designs, codes, and cryptography, 2021, Vol.89 (1), p.53-73 |
issn | 0925-1022 1573-7586 |
language | eng |
recordid | cdi_proquest_journals_2479468230 |
source | Springer Nature - Complete Springer Journals |
subjects | Codes Coding Coding and Information Theory Computer Science Convolutional codes Cryptology Discrete Mathematics in Computer Science Fields (mathematics) Matrix representation Multiplication Polynomial matrices Rings (mathematics) |
title | A new rank metric for convolutional codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20rank%20metric%20for%20convolutional%20codes&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Almeida,%20P.&rft.date=2021&rft.volume=89&rft.issue=1&rft.spage=53&rft.epage=73&rft.pages=53-73&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-020-00808-w&rft_dat=%3Cproquest_cross%3E2479468230%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479468230&rft_id=info:pmid/&rfr_iscdi=true |