Canonical Graph Contractions of Linear Relations on Hilbert Spaces

Given a closed linear relation T between two Hilbert spaces H and K , the corresponding first and second coordinate projections P T and Q T are both linear contractions from T to H , and to K , respectively. In this paper we investigate the features of these graph contractions. We show among other t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2021-02, Vol.15 (1), Article 21
Hauptverfasser: Tarcsay, Zsigmond, Sebestyén, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Complex analysis and operator theory
container_volume 15
creator Tarcsay, Zsigmond
Sebestyén, Zoltán
description Given a closed linear relation T between two Hilbert spaces H and K , the corresponding first and second coordinate projections P T and Q T are both linear contractions from T to H , and to K , respectively. In this paper we investigate the features of these graph contractions. We show among other things that P T P T ∗ = ( I + T ∗ T ) - 1 , and that Q T Q T ∗ = I - ( I + T T ∗ ) - 1 . The ranges ran P T ∗ and ran Q T ∗ are proved to be closely related to the so called ‘regular part’ of T . The connection of the graph projections to Stone’s decomposition of a closed linear relation is also discussed.
doi_str_mv 10.1007/s11785-020-01066-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479467839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479467839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-90d2dbe8df554c4728c59e9d06ba8e4b3ebfd583cc45a554babc091ce5f951cd3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcB19F8N1lq0RlhQPBjHZI01Q41qUln4b-32kF3rt7jce59cAA4J_iSYFxdFUIqJRCmGGGCpUTsACyIlAQpKunh7y74MTgpZYuxxJXWC3BT25hi520PV9kOb7BOcczWj12KBaYWbroYbIaPobf7W4Trrnchj_BpsD6UU3DU2r6Es_1cgpe72-d6jTYPq_v6eoM8I3xEGje0cUE1rRDc84oqL3TQDZbOqsAdC65thGLec2EnxFnnsSY-iFYL4hu2BBdz75DTxy6U0WzTLsfppaG80lxWiumJojPlcyolh9YMuXu3-dMQbL5dmdmVmVyZH1eGTSE2h8oEx9eQ_6r_SX0BH9RsbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479467839</pqid></control><display><type>article</type><title>Canonical Graph Contractions of Linear Relations on Hilbert Spaces</title><source>SpringerLink Journals</source><creator>Tarcsay, Zsigmond ; Sebestyén, Zoltán</creator><creatorcontrib>Tarcsay, Zsigmond ; Sebestyén, Zoltán</creatorcontrib><description>Given a closed linear relation T between two Hilbert spaces H and K , the corresponding first and second coordinate projections P T and Q T are both linear contractions from T to H , and to K , respectively. In this paper we investigate the features of these graph contractions. We show among other things that P T P T ∗ = ( I + T ∗ T ) - 1 , and that Q T Q T ∗ = I - ( I + T T ∗ ) - 1 . The ranges ran P T ∗ and ran Q T ∗ are proved to be closely related to the so called ‘regular part’ of T . The connection of the graph projections to Stone’s decomposition of a closed linear relation is also discussed.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-020-01066-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Hilbert space ; Mathematics ; Mathematics and Statistics ; Operator Theory</subject><ispartof>Complex analysis and operator theory, 2021-02, Vol.15 (1), Article 21</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-90d2dbe8df554c4728c59e9d06ba8e4b3ebfd583cc45a554babc091ce5f951cd3</cites><orcidid>0000-0001-8102-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-020-01066-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-020-01066-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tarcsay, Zsigmond</creatorcontrib><creatorcontrib>Sebestyén, Zoltán</creatorcontrib><title>Canonical Graph Contractions of Linear Relations on Hilbert Spaces</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>Given a closed linear relation T between two Hilbert spaces H and K , the corresponding first and second coordinate projections P T and Q T are both linear contractions from T to H , and to K , respectively. In this paper we investigate the features of these graph contractions. We show among other things that P T P T ∗ = ( I + T ∗ T ) - 1 , and that Q T Q T ∗ = I - ( I + T T ∗ ) - 1 . The ranges ran P T ∗ and ran Q T ∗ are proved to be closely related to the so called ‘regular part’ of T . The connection of the graph projections to Stone’s decomposition of a closed linear relation is also discussed.</description><subject>Analysis</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcB19F8N1lq0RlhQPBjHZI01Q41qUln4b-32kF3rt7jce59cAA4J_iSYFxdFUIqJRCmGGGCpUTsACyIlAQpKunh7y74MTgpZYuxxJXWC3BT25hi520PV9kOb7BOcczWj12KBaYWbroYbIaPobf7W4Trrnchj_BpsD6UU3DU2r6Es_1cgpe72-d6jTYPq_v6eoM8I3xEGje0cUE1rRDc84oqL3TQDZbOqsAdC65thGLec2EnxFnnsSY-iFYL4hu2BBdz75DTxy6U0WzTLsfppaG80lxWiumJojPlcyolh9YMuXu3-dMQbL5dmdmVmVyZH1eGTSE2h8oEx9eQ_6r_SX0BH9RsbQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Tarcsay, Zsigmond</creator><creator>Sebestyén, Zoltán</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8102-5055</orcidid></search><sort><creationdate>20210201</creationdate><title>Canonical Graph Contractions of Linear Relations on Hilbert Spaces</title><author>Tarcsay, Zsigmond ; Sebestyén, Zoltán</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-90d2dbe8df554c4728c59e9d06ba8e4b3ebfd583cc45a554babc091ce5f951cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tarcsay, Zsigmond</creatorcontrib><creatorcontrib>Sebestyén, Zoltán</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tarcsay, Zsigmond</au><au>Sebestyén, Zoltán</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Canonical Graph Contractions of Linear Relations on Hilbert Spaces</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>15</volume><issue>1</issue><artnum>21</artnum><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>Given a closed linear relation T between two Hilbert spaces H and K , the corresponding first and second coordinate projections P T and Q T are both linear contractions from T to H , and to K , respectively. In this paper we investigate the features of these graph contractions. We show among other things that P T P T ∗ = ( I + T ∗ T ) - 1 , and that Q T Q T ∗ = I - ( I + T T ∗ ) - 1 . The ranges ran P T ∗ and ran Q T ∗ are proved to be closely related to the so called ‘regular part’ of T . The connection of the graph projections to Stone’s decomposition of a closed linear relation is also discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-020-01066-3</doi><orcidid>https://orcid.org/0000-0001-8102-5055</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2021-02, Vol.15 (1), Article 21
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2479467839
source SpringerLink Journals
subjects Analysis
Hilbert space
Mathematics
Mathematics and Statistics
Operator Theory
title Canonical Graph Contractions of Linear Relations on Hilbert Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Canonical%20Graph%20Contractions%20of%20Linear%20Relations%20on%20Hilbert%20Spaces&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Tarcsay,%20Zsigmond&rft.date=2021-02-01&rft.volume=15&rft.issue=1&rft.artnum=21&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-020-01066-3&rft_dat=%3Cproquest_cross%3E2479467839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479467839&rft_id=info:pmid/&rfr_iscdi=true