Microwave-assisted preparation of manganese dioxide modified activated carbon for adsorption of lead ions

In this study, manganese dioxide was evenly distributed on the surface of activated carbon (AC), and the porous structure of AC and the surface functional groups of manganese dioxide were used to adsorb the heavy metal ion Pb(II). The advantages of microwave heating are fast heating and high selecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2020-07, Vol.82 (1), p.170
Hauptverfasser: Yan, Heng, Hu, Wenhai, Cheng, Song, Xia, Hongying, Chen, Quan, Zhang, Libo, Zhang, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 170
container_title Water science and technology
container_volume 82
creator Yan, Heng
Hu, Wenhai
Cheng, Song
Xia, Hongying
Chen, Quan
Zhang, Libo
Zhang, Qi
description In this study, manganese dioxide was evenly distributed on the surface of activated carbon (AC), and the porous structure of AC and the surface functional groups of manganese dioxide were used to adsorb the heavy metal ion Pb(II). The advantages of microwave heating are fast heating and high selectivity. The mole ratio control of the AC and MnO in 1:0.1, microwave heating to 800 °C, heat preservation for 30 min. The maximum adsorption capacity of the MnO -AC prepared by this method on Pb(II) can reach 664 mg/L at pH = 6. It can be observed by scanning electron microscope (SEM) that manganese dioxide particles are dispersed evenly on the surface and pore diameter of AC, and there is almost no agglomeration. The specific surface area was 752.8 m /g, and the micropore area was 483.9 m /g. The adsorption mechanism was explored through adsorption isotherm, adsorption kinetics, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). It is speculated that the adsorption mechanism includes electrostatic interaction and specific adsorption, indicating that lead ions enter into the void of manganese dioxide and form spherical complexes. The results showed that the adsorption behavior of Pb(II) by MnO -AC was consistent with the Langmuir adsorption model, the quasi-second-order kinetic model, and the particle internal diffusion model.
doi_str_mv 10.2166/wst.2020.350
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479465342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479465342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-6b2551683248e4e81c9223debd5ca226d7b6e95f0927d28e7d3df164a98939773</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqWwMaNIrKTY58SOR1TxJRWxwGw58QW5aupgpy38e1y1Zbobnvc93UPINaNTYELcb-MwBQp0ykt6QsZMKZEryeGUjClInjMAPiIXMS4opZIX9JyMOChGK8rGxL25Jvit2WBuYnRxQJv1AXsTzOD8KvNt1pnVl1lhxMw6_-MsZp23rnWJNM3gNmaXaUyoE976kBkbfeiP6SUam6U9XpKz1iwjXh3mhHw-PX7MXvL5-_Pr7GGeN7yUQy5qKEsmKg5FhQVWrFHpAYu1LRsDIKysBaqypQqkhQql5bZlojCqUlxJySfkdt_bB_-9xjjohV-HVTqpoZCqECUvIFF3eyp9H2PAVvfBdSb8akb1zqtOXvXOq05eE35zKF3XHdp_-CiS_wFNSXRN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479465342</pqid></control><display><type>article</type><title>Microwave-assisted preparation of manganese dioxide modified activated carbon for adsorption of lead ions</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yan, Heng ; Hu, Wenhai ; Cheng, Song ; Xia, Hongying ; Chen, Quan ; Zhang, Libo ; Zhang, Qi</creator><creatorcontrib>Yan, Heng ; Hu, Wenhai ; Cheng, Song ; Xia, Hongying ; Chen, Quan ; Zhang, Libo ; Zhang, Qi</creatorcontrib><description>In this study, manganese dioxide was evenly distributed on the surface of activated carbon (AC), and the porous structure of AC and the surface functional groups of manganese dioxide were used to adsorb the heavy metal ion Pb(II). The advantages of microwave heating are fast heating and high selectivity. The mole ratio control of the AC and MnO in 1:0.1, microwave heating to 800 °C, heat preservation for 30 min. The maximum adsorption capacity of the MnO -AC prepared by this method on Pb(II) can reach 664 mg/L at pH = 6. It can be observed by scanning electron microscope (SEM) that manganese dioxide particles are dispersed evenly on the surface and pore diameter of AC, and there is almost no agglomeration. The specific surface area was 752.8 m /g, and the micropore area was 483.9 m /g. The adsorption mechanism was explored through adsorption isotherm, adsorption kinetics, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). It is speculated that the adsorption mechanism includes electrostatic interaction and specific adsorption, indicating that lead ions enter into the void of manganese dioxide and form spherical complexes. The results showed that the adsorption behavior of Pb(II) by MnO -AC was consistent with the Langmuir adsorption model, the quasi-second-order kinetic model, and the particle internal diffusion model.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2020.350</identifier><identifier>PMID: 32910801</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Acids ; Activated carbon ; Adsorbents ; Adsorption ; Analytical methods ; Charcoal ; Diffusion models ; Electrostatic properties ; Experiments ; Fourier transforms ; Functional groups ; Heating ; Heavy metals ; Infrared spectroscopy ; Ions ; Kinetics ; Lead ; Manganese ; Manganese Compounds ; Manganese dioxide ; Metal ions ; Metals ; Microwaves ; Oxides ; Particle size ; Photoelectron spectroscopy ; Photoelectrons ; Scanning electron microscopy ; Selectivity ; Spectrum analysis ; Surface chemistry ; Water Pollutants, Chemical - analysis ; Water treatment ; X ray photoelectron spectroscopy ; X rays ; X-ray diffraction</subject><ispartof>Water science and technology, 2020-07, Vol.82 (1), p.170</ispartof><rights>Copyright IWA Publishing Jul 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-6b2551683248e4e81c9223debd5ca226d7b6e95f0927d28e7d3df164a98939773</citedby><cites>FETCH-LOGICAL-c357t-6b2551683248e4e81c9223debd5ca226d7b6e95f0927d28e7d3df164a98939773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32910801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Heng</creatorcontrib><creatorcontrib>Hu, Wenhai</creatorcontrib><creatorcontrib>Cheng, Song</creatorcontrib><creatorcontrib>Xia, Hongying</creatorcontrib><creatorcontrib>Chen, Quan</creatorcontrib><creatorcontrib>Zhang, Libo</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><title>Microwave-assisted preparation of manganese dioxide modified activated carbon for adsorption of lead ions</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>In this study, manganese dioxide was evenly distributed on the surface of activated carbon (AC), and the porous structure of AC and the surface functional groups of manganese dioxide were used to adsorb the heavy metal ion Pb(II). The advantages of microwave heating are fast heating and high selectivity. The mole ratio control of the AC and MnO in 1:0.1, microwave heating to 800 °C, heat preservation for 30 min. The maximum adsorption capacity of the MnO -AC prepared by this method on Pb(II) can reach 664 mg/L at pH = 6. It can be observed by scanning electron microscope (SEM) that manganese dioxide particles are dispersed evenly on the surface and pore diameter of AC, and there is almost no agglomeration. The specific surface area was 752.8 m /g, and the micropore area was 483.9 m /g. The adsorption mechanism was explored through adsorption isotherm, adsorption kinetics, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). It is speculated that the adsorption mechanism includes electrostatic interaction and specific adsorption, indicating that lead ions enter into the void of manganese dioxide and form spherical complexes. The results showed that the adsorption behavior of Pb(II) by MnO -AC was consistent with the Langmuir adsorption model, the quasi-second-order kinetic model, and the particle internal diffusion model.</description><subject>Acids</subject><subject>Activated carbon</subject><subject>Adsorbents</subject><subject>Adsorption</subject><subject>Analytical methods</subject><subject>Charcoal</subject><subject>Diffusion models</subject><subject>Electrostatic properties</subject><subject>Experiments</subject><subject>Fourier transforms</subject><subject>Functional groups</subject><subject>Heating</subject><subject>Heavy metals</subject><subject>Infrared spectroscopy</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Lead</subject><subject>Manganese</subject><subject>Manganese Compounds</subject><subject>Manganese dioxide</subject><subject>Metal ions</subject><subject>Metals</subject><subject>Microwaves</subject><subject>Oxides</subject><subject>Particle size</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Scanning electron microscopy</subject><subject>Selectivity</subject><subject>Spectrum analysis</subject><subject>Surface chemistry</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water treatment</subject><subject>X ray photoelectron spectroscopy</subject><subject>X rays</subject><subject>X-ray diffraction</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kD1PwzAQhi0EoqWwMaNIrKTY58SOR1TxJRWxwGw58QW5aupgpy38e1y1Zbobnvc93UPINaNTYELcb-MwBQp0ykt6QsZMKZEryeGUjClInjMAPiIXMS4opZIX9JyMOChGK8rGxL25Jvit2WBuYnRxQJv1AXsTzOD8KvNt1pnVl1lhxMw6_-MsZp23rnWJNM3gNmaXaUyoE976kBkbfeiP6SUam6U9XpKz1iwjXh3mhHw-PX7MXvL5-_Pr7GGeN7yUQy5qKEsmKg5FhQVWrFHpAYu1LRsDIKysBaqypQqkhQql5bZlojCqUlxJySfkdt_bB_-9xjjohV-HVTqpoZCqECUvIFF3eyp9H2PAVvfBdSb8akb1zqtOXvXOq05eE35zKF3XHdp_-CiS_wFNSXRN</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Yan, Heng</creator><creator>Hu, Wenhai</creator><creator>Cheng, Song</creator><creator>Xia, Hongying</creator><creator>Chen, Quan</creator><creator>Zhang, Libo</creator><creator>Zhang, Qi</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200701</creationdate><title>Microwave-assisted preparation of manganese dioxide modified activated carbon for adsorption of lead ions</title><author>Yan, Heng ; Hu, Wenhai ; Cheng, Song ; Xia, Hongying ; Chen, Quan ; Zhang, Libo ; Zhang, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-6b2551683248e4e81c9223debd5ca226d7b6e95f0927d28e7d3df164a98939773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Activated carbon</topic><topic>Adsorbents</topic><topic>Adsorption</topic><topic>Analytical methods</topic><topic>Charcoal</topic><topic>Diffusion models</topic><topic>Electrostatic properties</topic><topic>Experiments</topic><topic>Fourier transforms</topic><topic>Functional groups</topic><topic>Heating</topic><topic>Heavy metals</topic><topic>Infrared spectroscopy</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Lead</topic><topic>Manganese</topic><topic>Manganese Compounds</topic><topic>Manganese dioxide</topic><topic>Metal ions</topic><topic>Metals</topic><topic>Microwaves</topic><topic>Oxides</topic><topic>Particle size</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Scanning electron microscopy</topic><topic>Selectivity</topic><topic>Spectrum analysis</topic><topic>Surface chemistry</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water treatment</topic><topic>X ray photoelectron spectroscopy</topic><topic>X rays</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Heng</creatorcontrib><creatorcontrib>Hu, Wenhai</creatorcontrib><creatorcontrib>Cheng, Song</creatorcontrib><creatorcontrib>Xia, Hongying</creatorcontrib><creatorcontrib>Chen, Quan</creatorcontrib><creatorcontrib>Zhang, Libo</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Heng</au><au>Hu, Wenhai</au><au>Cheng, Song</au><au>Xia, Hongying</au><au>Chen, Quan</au><au>Zhang, Libo</au><au>Zhang, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave-assisted preparation of manganese dioxide modified activated carbon for adsorption of lead ions</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2020-07-01</date><risdate>2020</risdate><volume>82</volume><issue>1</issue><spage>170</spage><pages>170-</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>In this study, manganese dioxide was evenly distributed on the surface of activated carbon (AC), and the porous structure of AC and the surface functional groups of manganese dioxide were used to adsorb the heavy metal ion Pb(II). The advantages of microwave heating are fast heating and high selectivity. The mole ratio control of the AC and MnO in 1:0.1, microwave heating to 800 °C, heat preservation for 30 min. The maximum adsorption capacity of the MnO -AC prepared by this method on Pb(II) can reach 664 mg/L at pH = 6. It can be observed by scanning electron microscope (SEM) that manganese dioxide particles are dispersed evenly on the surface and pore diameter of AC, and there is almost no agglomeration. The specific surface area was 752.8 m /g, and the micropore area was 483.9 m /g. The adsorption mechanism was explored through adsorption isotherm, adsorption kinetics, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS). It is speculated that the adsorption mechanism includes electrostatic interaction and specific adsorption, indicating that lead ions enter into the void of manganese dioxide and form spherical complexes. The results showed that the adsorption behavior of Pb(II) by MnO -AC was consistent with the Langmuir adsorption model, the quasi-second-order kinetic model, and the particle internal diffusion model.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>32910801</pmid><doi>10.2166/wst.2020.350</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2020-07, Vol.82 (1), p.170
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_journals_2479465342
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Acids
Activated carbon
Adsorbents
Adsorption
Analytical methods
Charcoal
Diffusion models
Electrostatic properties
Experiments
Fourier transforms
Functional groups
Heating
Heavy metals
Infrared spectroscopy
Ions
Kinetics
Lead
Manganese
Manganese Compounds
Manganese dioxide
Metal ions
Metals
Microwaves
Oxides
Particle size
Photoelectron spectroscopy
Photoelectrons
Scanning electron microscopy
Selectivity
Spectrum analysis
Surface chemistry
Water Pollutants, Chemical - analysis
Water treatment
X ray photoelectron spectroscopy
X rays
X-ray diffraction
title Microwave-assisted preparation of manganese dioxide modified activated carbon for adsorption of lead ions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave-assisted%20preparation%20of%20manganese%20dioxide%20modified%20activated%20carbon%20for%20adsorption%20of%20lead%20ions&rft.jtitle=Water%20science%20and%20technology&rft.au=Yan,%20Heng&rft.date=2020-07-01&rft.volume=82&rft.issue=1&rft.spage=170&rft.pages=170-&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2020.350&rft_dat=%3Cproquest_cross%3E2479465342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479465342&rft_id=info:pmid/32910801&rfr_iscdi=true