Bone-like ceramic scaffolds designed with bioinspired porosity induce a different stem cell response

Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2021, Vol.32 (1), p.3-3, Article 3
Hauptverfasser: Panseri, Silvia, Montesi, Monica, Hautcoeur, Dominique, Dozio, Samuele M., Chamary, Shaan, De Barra, Eamonn, Tampieri, Anna, Leriche, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue 1
container_start_page 3
container_title Journal of materials science. Materials in medicine
container_volume 32
creator Panseri, Silvia
Montesi, Monica
Hautcoeur, Dominique
Dozio, Samuele M.
Chamary, Shaan
De Barra, Eamonn
Tampieri, Anna
Leriche, Anne
description Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments, looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in the inner spongy structure.
doi_str_mv 10.1007/s10856-020-06486-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2479206008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479423012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-c53d551a2f16c8538da91ded68c0e72e9d415de32f6262bc7c527059e3f6567b3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhD3BAkbjAITD-di5IpQKKtBIXOFtZe7LrksTBTor67_E2pUAPXGxp5pl3Pl5CnlN4QwH020zBSFUDgxqUMKrmD8iGSs1rYbh5SDbQSF0LyeGEPMn5EgBEI-VjcsK50JQJtSH-fRyx7sN3rBymdgiuyq7tutj7XHnMYT-ir36G-VDtQgxjnkIqgSmmmMN8XYXRLw6rtvKh6zDhOFd5xqGI9X2VME9xzPiUPOraPuOz2_-UfPv44ev5Rb398unz-dm2dlLIubzcS0lb1lHljOTGtw316JVxgJph4wWVHjnrFFNs57STTINskHdKKr3jp-TdqjstuwG9K9OktrdTCkObrm1sg_03M4aD3ccrqw3V0qgi8HoVONwruzjb2mMMuDAggF7Rwr66bZbijwXzbIeQj2u3I8YlWyZ0IxgHygr68h56GZc0llPcUAwUgCkUWylXbpsTdncTULBHw-1quC2G2xvDLS9FL_5e-a7kt8MF4CuQS2rcY_rT-z-yvwDAyrbq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479206008</pqid></control><display><type>article</type><title>Bone-like ceramic scaffolds designed with bioinspired porosity induce a different stem cell response</title><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Springer Nature OA Free Journals</source><creator>Panseri, Silvia ; Montesi, Monica ; Hautcoeur, Dominique ; Dozio, Samuele M. ; Chamary, Shaan ; De Barra, Eamonn ; Tampieri, Anna ; Leriche, Anne</creator><creatorcontrib>Panseri, Silvia ; Montesi, Monica ; Hautcoeur, Dominique ; Dozio, Samuele M. ; Chamary, Shaan ; De Barra, Eamonn ; Tampieri, Anna ; Leriche, Anne</creatorcontrib><description>Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments, looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in the inner spongy structure.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-020-06486-3</identifier><identifier>PMID: 33471246</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bioceramics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Biomimetics ; Bioreactors ; Bone biomaterials ; Bone grafts ; Bones ; Calcium phosphates ; Cancellous bone ; Cell adhesion ; Cell adhesion &amp; migration ; Cell viability ; Ceramics ; Chemical Sciences ; Chemistry and Materials Science ; Composites ; Cortical bone ; Differentiation (biology) ; Engineering Sciences ; Fluid dynamics ; Fluid flow ; Glass ; Grafting ; Hydroxyapatite ; Life Sciences ; Materials Science ; Mesenchyme ; Mimicry ; Natural Materials ; Perfusion ; Physiology ; Polymer Sciences ; Porosity ; Regenerative Medicine/Tissue Engineering ; Scaffolds ; Shear stress ; Stem cells ; Substitute bone ; Surfaces and Interfaces ; Surgical implants ; Thin Films ; Tissue Engineering Constructs and Cell Substrates ; Tissues ; Tricalcium phosphate</subject><ispartof>Journal of materials science. Materials in medicine, 2021, Vol.32 (1), p.3-3, Article 3</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-c53d551a2f16c8538da91ded68c0e72e9d415de32f6262bc7c527059e3f6567b3</citedby><cites>FETCH-LOGICAL-c545t-c53d551a2f16c8538da91ded68c0e72e9d415de32f6262bc7c527059e3f6567b3</cites><orcidid>0000-0002-8099-7132 ; 0000-0002-2801-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-020-06486-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s10856-020-06486-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33471246$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://uphf.hal.science/hal-03480401$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Panseri, Silvia</creatorcontrib><creatorcontrib>Montesi, Monica</creatorcontrib><creatorcontrib>Hautcoeur, Dominique</creatorcontrib><creatorcontrib>Dozio, Samuele M.</creatorcontrib><creatorcontrib>Chamary, Shaan</creatorcontrib><creatorcontrib>De Barra, Eamonn</creatorcontrib><creatorcontrib>Tampieri, Anna</creatorcontrib><creatorcontrib>Leriche, Anne</creatorcontrib><title>Bone-like ceramic scaffolds designed with bioinspired porosity induce a different stem cell response</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments, looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in the inner spongy structure.</description><subject>Bioceramics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Biomimetics</subject><subject>Bioreactors</subject><subject>Bone biomaterials</subject><subject>Bone grafts</subject><subject>Bones</subject><subject>Calcium phosphates</subject><subject>Cancellous bone</subject><subject>Cell adhesion</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell viability</subject><subject>Ceramics</subject><subject>Chemical Sciences</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Cortical bone</subject><subject>Differentiation (biology)</subject><subject>Engineering Sciences</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Glass</subject><subject>Grafting</subject><subject>Hydroxyapatite</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Mesenchyme</subject><subject>Mimicry</subject><subject>Natural Materials</subject><subject>Perfusion</subject><subject>Physiology</subject><subject>Polymer Sciences</subject><subject>Porosity</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Scaffolds</subject><subject>Shear stress</subject><subject>Stem cells</subject><subject>Substitute bone</subject><subject>Surfaces and Interfaces</subject><subject>Surgical implants</subject><subject>Thin Films</subject><subject>Tissue Engineering Constructs and Cell Substrates</subject><subject>Tissues</subject><subject>Tricalcium phosphate</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi0EokvhD3BAkbjAITD-di5IpQKKtBIXOFtZe7LrksTBTor67_E2pUAPXGxp5pl3Pl5CnlN4QwH020zBSFUDgxqUMKrmD8iGSs1rYbh5SDbQSF0LyeGEPMn5EgBEI-VjcsK50JQJtSH-fRyx7sN3rBymdgiuyq7tutj7XHnMYT-ir36G-VDtQgxjnkIqgSmmmMN8XYXRLw6rtvKh6zDhOFd5xqGI9X2VME9xzPiUPOraPuOz2_-UfPv44ev5Rb398unz-dm2dlLIubzcS0lb1lHljOTGtw316JVxgJph4wWVHjnrFFNs57STTINskHdKKr3jp-TdqjstuwG9K9OktrdTCkObrm1sg_03M4aD3ccrqw3V0qgi8HoVONwruzjb2mMMuDAggF7Rwr66bZbijwXzbIeQj2u3I8YlWyZ0IxgHygr68h56GZc0llPcUAwUgCkUWylXbpsTdncTULBHw-1quC2G2xvDLS9FL_5e-a7kt8MF4CuQS2rcY_rT-z-yvwDAyrbq</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Panseri, Silvia</creator><creator>Montesi, Monica</creator><creator>Hautcoeur, Dominique</creator><creator>Dozio, Samuele M.</creator><creator>Chamary, Shaan</creator><creator>De Barra, Eamonn</creator><creator>Tampieri, Anna</creator><creator>Leriche, Anne</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8099-7132</orcidid><orcidid>https://orcid.org/0000-0002-2801-2957</orcidid></search><sort><creationdate>2021</creationdate><title>Bone-like ceramic scaffolds designed with bioinspired porosity induce a different stem cell response</title><author>Panseri, Silvia ; Montesi, Monica ; Hautcoeur, Dominique ; Dozio, Samuele M. ; Chamary, Shaan ; De Barra, Eamonn ; Tampieri, Anna ; Leriche, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-c53d551a2f16c8538da91ded68c0e72e9d415de32f6262bc7c527059e3f6567b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bioceramics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Biomimetics</topic><topic>Bioreactors</topic><topic>Bone biomaterials</topic><topic>Bone grafts</topic><topic>Bones</topic><topic>Calcium phosphates</topic><topic>Cancellous bone</topic><topic>Cell adhesion</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell viability</topic><topic>Ceramics</topic><topic>Chemical Sciences</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Cortical bone</topic><topic>Differentiation (biology)</topic><topic>Engineering Sciences</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Glass</topic><topic>Grafting</topic><topic>Hydroxyapatite</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Mesenchyme</topic><topic>Mimicry</topic><topic>Natural Materials</topic><topic>Perfusion</topic><topic>Physiology</topic><topic>Polymer Sciences</topic><topic>Porosity</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Scaffolds</topic><topic>Shear stress</topic><topic>Stem cells</topic><topic>Substitute bone</topic><topic>Surfaces and Interfaces</topic><topic>Surgical implants</topic><topic>Thin Films</topic><topic>Tissue Engineering Constructs and Cell Substrates</topic><topic>Tissues</topic><topic>Tricalcium phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panseri, Silvia</creatorcontrib><creatorcontrib>Montesi, Monica</creatorcontrib><creatorcontrib>Hautcoeur, Dominique</creatorcontrib><creatorcontrib>Dozio, Samuele M.</creatorcontrib><creatorcontrib>Chamary, Shaan</creatorcontrib><creatorcontrib>De Barra, Eamonn</creatorcontrib><creatorcontrib>Tampieri, Anna</creatorcontrib><creatorcontrib>Leriche, Anne</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panseri, Silvia</au><au>Montesi, Monica</au><au>Hautcoeur, Dominique</au><au>Dozio, Samuele M.</au><au>Chamary, Shaan</au><au>De Barra, Eamonn</au><au>Tampieri, Anna</au><au>Leriche, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bone-like ceramic scaffolds designed with bioinspired porosity induce a different stem cell response</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2021</date><risdate>2021</risdate><volume>32</volume><issue>1</issue><spage>3</spage><epage>3</epage><pages>3-3</pages><artnum>3</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Biomaterial science increasingly seeks more biomimetic scaffolds that functionally augment the native bone tissue. In this paper, a new concept of a structural scaffold design is presented where the physiological multi-scale architecture is fully incorporated in a single-scaffold solution. Hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) bioceramic scaffolds with different bioinspired porosity, mimicking the spongy and cortical bone tissue, were studied. In vitro experiments, looking at the mesenchymal stem cells behaviour, were conducted in a perfusion bioreactor that mimics the physiological conditions in terms of interstitial fluid flow and associated induced shear stress. All the biomaterials enhanced cell adhesion and cell viability. Cortical bone scaffolds, with an aligned architecture, induced an overexpression of several late stage genes involved in the process of osteogenic differentiation compared to the spongy bone scaffolds. This study reveals the exciting prospect of bioinspired porous designed ceramic scaffolds that combines both cortical and cancellous bone in a single ceramic bone graft. It is prospected that dual core shell scaffold could significantly modulate osteogenic processes, once implanted in patients, rapidly forming mature bone tissue at the tissue interface, followed by subsequent bone maturation in the inner spongy structure.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33471246</pmid><doi>10.1007/s10856-020-06486-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8099-7132</orcidid><orcidid>https://orcid.org/0000-0002-2801-2957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2021, Vol.32 (1), p.3-3, Article 3
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_journals_2479206008
source Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Springer Nature OA Free Journals
subjects Bioceramics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Biomimetics
Bioreactors
Bone biomaterials
Bone grafts
Bones
Calcium phosphates
Cancellous bone
Cell adhesion
Cell adhesion & migration
Cell viability
Ceramics
Chemical Sciences
Chemistry and Materials Science
Composites
Cortical bone
Differentiation (biology)
Engineering Sciences
Fluid dynamics
Fluid flow
Glass
Grafting
Hydroxyapatite
Life Sciences
Materials Science
Mesenchyme
Mimicry
Natural Materials
Perfusion
Physiology
Polymer Sciences
Porosity
Regenerative Medicine/Tissue Engineering
Scaffolds
Shear stress
Stem cells
Substitute bone
Surfaces and Interfaces
Surgical implants
Thin Films
Tissue Engineering Constructs and Cell Substrates
Tissues
Tricalcium phosphate
title Bone-like ceramic scaffolds designed with bioinspired porosity induce a different stem cell response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bone-like%20ceramic%20scaffolds%20designed%20with%20bioinspired%20porosity%20induce%20a%20different%20stem%20cell%20response&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Panseri,%20Silvia&rft.date=2021&rft.volume=32&rft.issue=1&rft.spage=3&rft.epage=3&rft.pages=3-3&rft.artnum=3&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-020-06486-3&rft_dat=%3Cproquest_pubme%3E2479423012%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479206008&rft_id=info:pmid/33471246&rfr_iscdi=true