New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks

This study proposes a new method of visualizing the ambient dose rate distribution using artificial neural networks (ANNs) from airborne radiation monitoring results. The method was applied to the results of the airborne radiation monitoring which was conducted around the Fukushima Daiichi Nuclear P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-01, Vol.11 (1), p.1857-11, Article 1857
Hauptverfasser: Sasaki, Miyuki, Sanada, Yukihisa, Katengeza, Estiner W., Yamamoto, Akio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1857
container_title Scientific reports
container_volume 11
creator Sasaki, Miyuki
Sanada, Yukihisa
Katengeza, Estiner W.
Yamamoto, Akio
description This study proposes a new method of visualizing the ambient dose rate distribution using artificial neural networks (ANNs) from airborne radiation monitoring results. The method was applied to the results of the airborne radiation monitoring which was conducted around the Fukushima Daiichi Nuclear Power Plant by an unmanned aerial vehicle. Much of the survey data obtained in the past were used as the training data for building a network. The number of training cases was related to the error between the ground and converted values by the ANN. The quantitative evaluation index (the root-mean-square error) between the ANN-converted value and the ground-based survey result converged at 200 training cases. This number of training case was considered a rough criterion of the required number of training cases. The reliability of the ANN method was evaluated by comparison with the ground-based survey data. The dose rate map created by the ANNs method reproduced ground-based survey results better than traditional methods.
doi_str_mv 10.1038/s41598-021-81546-4
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2479200000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c30641db1c514e169da874cb86efc8e9</doaj_id><sourcerecordid>2479200000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-338d5be39bf13baca7246b9bf71808c8c54c8c5962f07d62a7715663b6a15aa73</originalsourceid><addsrcrecordid>eNp9Ustu1TAQjRCIVqU_wAJZYh3wK7azQUKFQqWqsIC1NXGcG9_mxsWPXsEP8Ns4N6W0G7yYGdtnzpzRTFW9JPgNwUy9jZw0raoxJbUiDRc1f1IdU8ybmjJKnz6Ij6rTGLe4nIa2nLTPqyPGuGRE4OPq95Xdo51No-_R4AO6dTHD5H65eYPSaFHvo0UBUolcTMF1OTk_Iwg-z_0BcZ6vcxzdDtAHcM6MDl1lM1kI6Kvf22InmBPKcWGEkNzgjIMJzTaHg0t7H67ji-rZAFO0p3f-pPp-_vHb2ef68suni7P3l7URWKSaMdU3nWVtNxDWgQFJuejKTRKFlVGm4YtpBR2w7AUFKUkjBOsEkAZAspPqYuXtPWz1TSi6w0_twenDgw8bvYgsDWjDsOCk74hpCLdEtD0oyU2nhB2Msm3herdy3eRuZ3tj51RaekT6-Gd2o974Wy0VkUIsYl7fEQT_I9uY9NbnMJf-NeWypcvMcEHRFWWCjzHY4b4CwXrZBb3ugi67oA-7oHlJevVQ233K38kXAFsBsXzNGxv-1f4P7R9SnsJE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479200000</pqid></control><display><type>article</type><title>New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Sasaki, Miyuki ; Sanada, Yukihisa ; Katengeza, Estiner W. ; Yamamoto, Akio</creator><creatorcontrib>Sasaki, Miyuki ; Sanada, Yukihisa ; Katengeza, Estiner W. ; Yamamoto, Akio</creatorcontrib><description>This study proposes a new method of visualizing the ambient dose rate distribution using artificial neural networks (ANNs) from airborne radiation monitoring results. The method was applied to the results of the airborne radiation monitoring which was conducted around the Fukushima Daiichi Nuclear Power Plant by an unmanned aerial vehicle. Much of the survey data obtained in the past were used as the training data for building a network. The number of training cases was related to the error between the ground and converted values by the ANN. The quantitative evaluation index (the root-mean-square error) between the ANN-converted value and the ground-based survey result converged at 200 training cases. This number of training case was considered a rough criterion of the required number of training cases. The reliability of the ANN method was evaluated by comparison with the ground-based survey data. The dose rate map created by the ANNs method reproduced ground-based survey results better than traditional methods.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-81546-4</identifier><identifier>PMID: 33473160</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705 ; 704/172/169/895 ; Humanities and Social Sciences ; multidisciplinary ; Neural networks ; Nuclear power plants ; Polls &amp; surveys ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2021-01, Vol.11 (1), p.1857-11, Article 1857</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-338d5be39bf13baca7246b9bf71808c8c54c8c5962f07d62a7715663b6a15aa73</citedby><cites>FETCH-LOGICAL-c606t-338d5be39bf13baca7246b9bf71808c8c54c8c5962f07d62a7715663b6a15aa73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817667/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7817667/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33473160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasaki, Miyuki</creatorcontrib><creatorcontrib>Sanada, Yukihisa</creatorcontrib><creatorcontrib>Katengeza, Estiner W.</creatorcontrib><creatorcontrib>Yamamoto, Akio</creatorcontrib><title>New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>This study proposes a new method of visualizing the ambient dose rate distribution using artificial neural networks (ANNs) from airborne radiation monitoring results. The method was applied to the results of the airborne radiation monitoring which was conducted around the Fukushima Daiichi Nuclear Power Plant by an unmanned aerial vehicle. Much of the survey data obtained in the past were used as the training data for building a network. The number of training cases was related to the error between the ground and converted values by the ANN. The quantitative evaluation index (the root-mean-square error) between the ANN-converted value and the ground-based survey result converged at 200 training cases. This number of training case was considered a rough criterion of the required number of training cases. The reliability of the ANN method was evaluated by comparison with the ground-based survey data. The dose rate map created by the ANNs method reproduced ground-based survey results better than traditional methods.</description><subject>639/705</subject><subject>704/172/169/895</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Nuclear power plants</subject><subject>Polls &amp; surveys</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp9Ustu1TAQjRCIVqU_wAJZYh3wK7azQUKFQqWqsIC1NXGcG9_mxsWPXsEP8Ns4N6W0G7yYGdtnzpzRTFW9JPgNwUy9jZw0raoxJbUiDRc1f1IdU8ybmjJKnz6Ij6rTGLe4nIa2nLTPqyPGuGRE4OPq95Xdo51No-_R4AO6dTHD5H65eYPSaFHvo0UBUolcTMF1OTk_Iwg-z_0BcZ6vcxzdDtAHcM6MDl1lM1kI6Kvf22InmBPKcWGEkNzgjIMJzTaHg0t7H67ji-rZAFO0p3f-pPp-_vHb2ef68suni7P3l7URWKSaMdU3nWVtNxDWgQFJuejKTRKFlVGm4YtpBR2w7AUFKUkjBOsEkAZAspPqYuXtPWz1TSi6w0_twenDgw8bvYgsDWjDsOCk74hpCLdEtD0oyU2nhB2Msm3herdy3eRuZ3tj51RaekT6-Gd2o974Wy0VkUIsYl7fEQT_I9uY9NbnMJf-NeWypcvMcEHRFWWCjzHY4b4CwXrZBb3ugi67oA-7oHlJevVQ233K38kXAFsBsXzNGxv-1f4P7R9SnsJE</recordid><startdate>20210120</startdate><enddate>20210120</enddate><creator>Sasaki, Miyuki</creator><creator>Sanada, Yukihisa</creator><creator>Katengeza, Estiner W.</creator><creator>Yamamoto, Akio</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210120</creationdate><title>New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks</title><author>Sasaki, Miyuki ; Sanada, Yukihisa ; Katengeza, Estiner W. ; Yamamoto, Akio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-338d5be39bf13baca7246b9bf71808c8c54c8c5962f07d62a7715663b6a15aa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/705</topic><topic>704/172/169/895</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Nuclear power plants</topic><topic>Polls &amp; surveys</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasaki, Miyuki</creatorcontrib><creatorcontrib>Sanada, Yukihisa</creatorcontrib><creatorcontrib>Katengeza, Estiner W.</creatorcontrib><creatorcontrib>Yamamoto, Akio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasaki, Miyuki</au><au>Sanada, Yukihisa</au><au>Katengeza, Estiner W.</au><au>Yamamoto, Akio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-01-20</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>1857</spage><epage>11</epage><pages>1857-11</pages><artnum>1857</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>This study proposes a new method of visualizing the ambient dose rate distribution using artificial neural networks (ANNs) from airborne radiation monitoring results. The method was applied to the results of the airborne radiation monitoring which was conducted around the Fukushima Daiichi Nuclear Power Plant by an unmanned aerial vehicle. Much of the survey data obtained in the past were used as the training data for building a network. The number of training cases was related to the error between the ground and converted values by the ANN. The quantitative evaluation index (the root-mean-square error) between the ANN-converted value and the ground-based survey result converged at 200 training cases. This number of training case was considered a rough criterion of the required number of training cases. The reliability of the ANN method was evaluated by comparison with the ground-based survey data. The dose rate map created by the ANNs method reproduced ground-based survey results better than traditional methods.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33473160</pmid><doi>10.1038/s41598-021-81546-4</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-01, Vol.11 (1), p.1857-11, Article 1857
issn 2045-2322
2045-2322
language eng
recordid cdi_proquest_journals_2479200000
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 639/705
704/172/169/895
Humanities and Social Sciences
multidisciplinary
Neural networks
Nuclear power plants
Polls & surveys
Science
Science (multidisciplinary)
title New method for visualizing the dose rate distribution around the Fukushima Daiichi Nuclear Power Plant using artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20method%20for%20visualizing%20the%20dose%20rate%20distribution%20around%20the%20Fukushima%20Daiichi%20Nuclear%20Power%20Plant%20using%20artificial%20neural%20networks&rft.jtitle=Scientific%20reports&rft.au=Sasaki,%20Miyuki&rft.date=2021-01-20&rft.volume=11&rft.issue=1&rft.spage=1857&rft.epage=11&rft.pages=1857-11&rft.artnum=1857&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-81546-4&rft_dat=%3Cproquest_doaj_%3E2479200000%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479200000&rft_id=info:pmid/33473160&rft_doaj_id=oai_doaj_org_article_c30641db1c514e169da874cb86efc8e9&rfr_iscdi=true