A differential moth flame optimization algorithm for mobile sink trajectory
A popular data acquisition technique for Wireless Sensor Networks (WSNs) is usage of static sink. However, this results in hot-spot or sink-hole problem as the sensor nodes near the sink die as they disseminate the data of the entire network to the sink node. In this work, in order to alleviate thes...
Gespeichert in:
Veröffentlicht in: | Peer-to-peer networking and applications 2021, Vol.14 (1), p.44-57 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 44 |
container_title | Peer-to-peer networking and applications |
container_volume | 14 |
creator | Sapre, Saunhita Mini, S. |
description | A popular data acquisition technique for Wireless Sensor Networks (WSNs) is usage of static sink. However, this results in hot-spot or sink-hole problem as the sensor nodes near the sink die as they disseminate the data of the entire network to the sink node. In this work, in order to alleviate these problems, mobile sink (MS) is used. However, designing an optimal trajectory for mobile sink traversal is a complex problem. Further, instead of constrained sensor nodes, relay nodes (RNs) are used to cluster the data sensed. These RNs are deployed using the proposed meta-heuristic Differential Moth Flame Optimization (DMFO) algorithm. Also, a traversal strategy for the MS is proposed in order to collect the sensed data. The proposed strategy is an improvement to most of the existing strategies that use Traveling Salesman Problem (TSP) solver with exponential complexity for sink movement. Extensive simulations are carried out and the results are analyzed for various network scenarios over different performance metrics. |
doi_str_mv | 10.1007/s12083-020-00947-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479199990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2479199990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d93a89db73e270e48a011ce2f7f30f4484c516a6d8037fc428e883434f49a1903</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfOH43tsaqAIiqxwGy5id26JHGxXVXl15MSBBu33A3P-570IHRN4JYAiLtEKEhWAIUCQHFR7E_QiChWFiWfwOnvzek5ukhpA1ASNqEj9DzFtXfORttlbxrchrzGrjGtxWGbfes_Tfahw6ZZhejzusUuxJ5a-sbi5Lt3nKPZ2CqHeLhEZ840yV797DF6e7h_nc2Lxcvj02y6KCpGVC5qxYxU9VIwSwVYLg0QUlnqhGPgOJe8mpDSlLUEJlzFqbRSMs6448oQBWyMbobebQwfO5uy3oRd7PqXmnKhiOrnSNGBqmJIKVqnt9G3Jh40AX2Upgdpupemv6XpfR9iQyj1cLey8a_6n9QXB35vug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479199990</pqid></control><display><type>article</type><title>A differential moth flame optimization algorithm for mobile sink trajectory</title><source>SpringerLink</source><creator>Sapre, Saunhita ; Mini, S.</creator><creatorcontrib>Sapre, Saunhita ; Mini, S.</creatorcontrib><description>A popular data acquisition technique for Wireless Sensor Networks (WSNs) is usage of static sink. However, this results in hot-spot or sink-hole problem as the sensor nodes near the sink die as they disseminate the data of the entire network to the sink node. In this work, in order to alleviate these problems, mobile sink (MS) is used. However, designing an optimal trajectory for mobile sink traversal is a complex problem. Further, instead of constrained sensor nodes, relay nodes (RNs) are used to cluster the data sensed. These RNs are deployed using the proposed meta-heuristic Differential Moth Flame Optimization (DMFO) algorithm. Also, a traversal strategy for the MS is proposed in order to collect the sensed data. The proposed strategy is an improvement to most of the existing strategies that use Traveling Salesman Problem (TSP) solver with exponential complexity for sink movement. Extensive simulations are carried out and the results are analyzed for various network scenarios over different performance metrics.</description><identifier>ISSN: 1936-6442</identifier><identifier>EISSN: 1936-6450</identifier><identifier>DOI: 10.1007/s12083-020-00947-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Communications Engineering ; Complexity ; Computer Communication Networks ; Engineering ; Heuristic methods ; Information Systems and Communication Service ; Networks ; Nodes ; Performance measurement ; Sensors ; Signal,Image and Speech Processing ; Sinkholes ; Trajectory optimization ; Traveling salesman problem ; Wireless networks ; Wireless sensor networks</subject><ispartof>Peer-to-peer networking and applications, 2021, Vol.14 (1), p.44-57</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d93a89db73e270e48a011ce2f7f30f4484c516a6d8037fc428e883434f49a1903</citedby><cites>FETCH-LOGICAL-c319t-d93a89db73e270e48a011ce2f7f30f4484c516a6d8037fc428e883434f49a1903</cites><orcidid>0000-0003-0762-4951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12083-020-00947-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12083-020-00947-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sapre, Saunhita</creatorcontrib><creatorcontrib>Mini, S.</creatorcontrib><title>A differential moth flame optimization algorithm for mobile sink trajectory</title><title>Peer-to-peer networking and applications</title><addtitle>Peer-to-Peer Netw. Appl</addtitle><description>A popular data acquisition technique for Wireless Sensor Networks (WSNs) is usage of static sink. However, this results in hot-spot or sink-hole problem as the sensor nodes near the sink die as they disseminate the data of the entire network to the sink node. In this work, in order to alleviate these problems, mobile sink (MS) is used. However, designing an optimal trajectory for mobile sink traversal is a complex problem. Further, instead of constrained sensor nodes, relay nodes (RNs) are used to cluster the data sensed. These RNs are deployed using the proposed meta-heuristic Differential Moth Flame Optimization (DMFO) algorithm. Also, a traversal strategy for the MS is proposed in order to collect the sensed data. The proposed strategy is an improvement to most of the existing strategies that use Traveling Salesman Problem (TSP) solver with exponential complexity for sink movement. Extensive simulations are carried out and the results are analyzed for various network scenarios over different performance metrics.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Complexity</subject><subject>Computer Communication Networks</subject><subject>Engineering</subject><subject>Heuristic methods</subject><subject>Information Systems and Communication Service</subject><subject>Networks</subject><subject>Nodes</subject><subject>Performance measurement</subject><subject>Sensors</subject><subject>Signal,Image and Speech Processing</subject><subject>Sinkholes</subject><subject>Trajectory optimization</subject><subject>Traveling salesman problem</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>1936-6442</issn><issn>1936-6450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kD1PwzAQhi0EEqXwB5gsMQfOH43tsaqAIiqxwGy5id26JHGxXVXl15MSBBu33A3P-570IHRN4JYAiLtEKEhWAIUCQHFR7E_QiChWFiWfwOnvzek5ukhpA1ASNqEj9DzFtXfORttlbxrchrzGrjGtxWGbfes_Tfahw6ZZhejzusUuxJ5a-sbi5Lt3nKPZ2CqHeLhEZ840yV797DF6e7h_nc2Lxcvj02y6KCpGVC5qxYxU9VIwSwVYLg0QUlnqhGPgOJe8mpDSlLUEJlzFqbRSMs6448oQBWyMbobebQwfO5uy3oRd7PqXmnKhiOrnSNGBqmJIKVqnt9G3Jh40AX2Upgdpupemv6XpfR9iQyj1cLey8a_6n9QXB35vug</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Sapre, Saunhita</creator><creator>Mini, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0762-4951</orcidid></search><sort><creationdate>2021</creationdate><title>A differential moth flame optimization algorithm for mobile sink trajectory</title><author>Sapre, Saunhita ; Mini, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d93a89db73e270e48a011ce2f7f30f4484c516a6d8037fc428e883434f49a1903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Complexity</topic><topic>Computer Communication Networks</topic><topic>Engineering</topic><topic>Heuristic methods</topic><topic>Information Systems and Communication Service</topic><topic>Networks</topic><topic>Nodes</topic><topic>Performance measurement</topic><topic>Sensors</topic><topic>Signal,Image and Speech Processing</topic><topic>Sinkholes</topic><topic>Trajectory optimization</topic><topic>Traveling salesman problem</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sapre, Saunhita</creatorcontrib><creatorcontrib>Mini, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Peer-to-peer networking and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sapre, Saunhita</au><au>Mini, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A differential moth flame optimization algorithm for mobile sink trajectory</atitle><jtitle>Peer-to-peer networking and applications</jtitle><stitle>Peer-to-Peer Netw. Appl</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>44</spage><epage>57</epage><pages>44-57</pages><issn>1936-6442</issn><eissn>1936-6450</eissn><abstract>A popular data acquisition technique for Wireless Sensor Networks (WSNs) is usage of static sink. However, this results in hot-spot or sink-hole problem as the sensor nodes near the sink die as they disseminate the data of the entire network to the sink node. In this work, in order to alleviate these problems, mobile sink (MS) is used. However, designing an optimal trajectory for mobile sink traversal is a complex problem. Further, instead of constrained sensor nodes, relay nodes (RNs) are used to cluster the data sensed. These RNs are deployed using the proposed meta-heuristic Differential Moth Flame Optimization (DMFO) algorithm. Also, a traversal strategy for the MS is proposed in order to collect the sensed data. The proposed strategy is an improvement to most of the existing strategies that use Traveling Salesman Problem (TSP) solver with exponential complexity for sink movement. Extensive simulations are carried out and the results are analyzed for various network scenarios over different performance metrics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12083-020-00947-w</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0762-4951</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-6442 |
ispartof | Peer-to-peer networking and applications, 2021, Vol.14 (1), p.44-57 |
issn | 1936-6442 1936-6450 |
language | eng |
recordid | cdi_proquest_journals_2479199990 |
source | SpringerLink |
subjects | Algorithms Communications Engineering Complexity Computer Communication Networks Engineering Heuristic methods Information Systems and Communication Service Networks Nodes Performance measurement Sensors Signal,Image and Speech Processing Sinkholes Trajectory optimization Traveling salesman problem Wireless networks Wireless sensor networks |
title | A differential moth flame optimization algorithm for mobile sink trajectory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20differential%20moth%20flame%20optimization%20algorithm%20for%20mobile%20sink%20trajectory&rft.jtitle=Peer-to-peer%20networking%20and%20applications&rft.au=Sapre,%20Saunhita&rft.date=2021&rft.volume=14&rft.issue=1&rft.spage=44&rft.epage=57&rft.pages=44-57&rft.issn=1936-6442&rft.eissn=1936-6450&rft_id=info:doi/10.1007/s12083-020-00947-w&rft_dat=%3Cproquest_cross%3E2479199990%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479199990&rft_id=info:pmid/&rfr_iscdi=true |