Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach

Estimation of ground reaction forces in runners has been limited to laboratory environments by means of instrumented treadmills, in-ground force plates and optoelectronic systems. Recent advances in estimation techniques using wearable sensors for kinematic analysis and sports performance could enab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics 2021-01, Vol.115, p.110130, Article 110130
Hauptverfasser: LeBlanc, Benjamin, Hernandez, Eric M., McGinnis, Ryan S., Gurchiek, Reed D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110130
container_title Journal of biomechanics
container_volume 115
creator LeBlanc, Benjamin
Hernandez, Eric M.
McGinnis, Ryan S.
Gurchiek, Reed D.
description Estimation of ground reaction forces in runners has been limited to laboratory environments by means of instrumented treadmills, in-ground force plates and optoelectronic systems. Recent advances in estimation techniques using wearable sensors for kinematic analysis and sports performance could enable estimation outside the laboratory. This paper proposes a state-input-parameter estimation framework to continuously estimate the vertical ground reaction force waveform during running. By modeling a runner as a single degree of freedom mass-spring-damper with acceleration measurements at the sacrum a state-space formulation can be applied using Newtonian methods. A dual-Kalman filter is employed to estimate the unmeasured system input which feeds through to an unscented Kalman filter to estimate system dynamics and unknown model parameters (e.g. spring stiffness). For validation, 14 subjects performed three one-minute running trials at three different speeds (self-selected slow, comfortable, and fast) on a pressure-sensor-instrumented treadmill. The estimated vertical ground reaction force waveform parameters; peak vertical ground reaction force (RMSE=6.1-7.2%,ρ=0.95-0.97), vertical impulse (RMSE=8.5-13.0%,ρ=0.50-0.60), loading rate (RMSE=24.6-39.4%,ρ=0.85-0.93), and cadence RMSE
doi_str_mv 10.1016/j.jbiomech.2020.110130
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2479031362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021929020305546</els_id><sourcerecordid>2479031362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-331919b59666ecc91483eb9712e2d3fa594ebc6bbe2dcfc51e5fd88eb8a6c3f43</originalsourceid><addsrcrecordid>eNqFUcluFDEUtBCIDIFfiCxx7sFLr5yIRiQgInGBs-W2X8-46bYHL0R8Dz_Km0zClYstl2qRqwi54mzLGW_fzdt5dGEFc9gKJhBEVLJnZMP7TlZC9uw52TAmeDWIgV2QVynNjLGu7oaX5EJK0XT42pA_u-Cz8yWURCFlt-rsgqdhovsYirc0gjYP0BSiAWpLdH5Pl4CHdSlrj2As3p_Qe5cPzlNNJ3TZF6Br8C6HB8UU9Qr3If54T6_pF72sGi3dkiFWo05gkWthqazOKC_plKiPxxi0ObwmLya9JHjzeF-S7zcfv-0-VXdfbz_vru8qU9d1rqTkAx_GZmjbFowZeN1LGIeOCxBWTroZahhNO474NJNpODST7XsYe90aOdXykrw9-2Lsz4JtqDmU6DFSCeyNSS5bgaz2zDIxpBRhUseItcXfijN12kbN6mkbddpGnbdB4dWjfRlXsP9kT2Mg4cOZAPjJXw6iSsYBFmxdBJOVDe5_GX8B7gangQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2479031362</pqid></control><display><type>article</type><title>Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach</title><source>Elsevier ScienceDirect Journals</source><source>ProQuest Central UK/Ireland</source><creator>LeBlanc, Benjamin ; Hernandez, Eric M. ; McGinnis, Ryan S. ; Gurchiek, Reed D.</creator><creatorcontrib>LeBlanc, Benjamin ; Hernandez, Eric M. ; McGinnis, Ryan S. ; Gurchiek, Reed D.</creatorcontrib><description>Estimation of ground reaction forces in runners has been limited to laboratory environments by means of instrumented treadmills, in-ground force plates and optoelectronic systems. Recent advances in estimation techniques using wearable sensors for kinematic analysis and sports performance could enable estimation outside the laboratory. This paper proposes a state-input-parameter estimation framework to continuously estimate the vertical ground reaction force waveform during running. By modeling a runner as a single degree of freedom mass-spring-damper with acceleration measurements at the sacrum a state-space formulation can be applied using Newtonian methods. A dual-Kalman filter is employed to estimate the unmeasured system input which feeds through to an unscented Kalman filter to estimate system dynamics and unknown model parameters (e.g. spring stiffness). For validation, 14 subjects performed three one-minute running trials at three different speeds (self-selected slow, comfortable, and fast) on a pressure-sensor-instrumented treadmill. The estimated vertical ground reaction force waveform parameters; peak vertical ground reaction force (RMSE=6.1-7.2%,ρ=0.95-0.97), vertical impulse (RMSE=8.5-13.0%,ρ=0.50-0.60), loading rate (RMSE=24.6-39.4%,ρ=0.85-0.93), and cadence RMSE&lt;1%,ρ=1.00 were compared against the instrumented treadmill measurements. The proposed state-input-parameter estimation framework could monitor personalized vertical ground reaction force metrics for potential biofeedback applications. The feedback mechanism could provide information about the vertical ground reaction force characteristics to the runner as they are running to provide knowledge of both desirable and undesirable loading characteristics experienced.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2020.110130</identifier><identifier>PMID: 33257007</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Acceleration ; Algorithms ; Biofeedback ; Biomechanics ; Data integration ; Dynamical systems ; Feedback ; Force plates ; Injuries ; Kalman filter ; Kalman filters ; Kinematics ; Laboratories ; Loading rate ; Mathematical models ; Minimal instrumentation ; Optoelectronics ; Parameter estimation ; Parameter identification ; Running ; Sacrum ; Sensors ; State estimation ; Stiffness ; System dynamics ; Treadmills ; Vertical forces ; Waveforms ; Wearable sensors</subject><ispartof>Journal of biomechanics, 2021-01, Vol.115, p.110130, Article 110130</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><rights>2020. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-331919b59666ecc91483eb9712e2d3fa594ebc6bbe2dcfc51e5fd88eb8a6c3f43</citedby><cites>FETCH-LOGICAL-c444t-331919b59666ecc91483eb9712e2d3fa594ebc6bbe2dcfc51e5fd88eb8a6c3f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2479031362?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976,64364,64368,72218</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33257007$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LeBlanc, Benjamin</creatorcontrib><creatorcontrib>Hernandez, Eric M.</creatorcontrib><creatorcontrib>McGinnis, Ryan S.</creatorcontrib><creatorcontrib>Gurchiek, Reed D.</creatorcontrib><title>Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Estimation of ground reaction forces in runners has been limited to laboratory environments by means of instrumented treadmills, in-ground force plates and optoelectronic systems. Recent advances in estimation techniques using wearable sensors for kinematic analysis and sports performance could enable estimation outside the laboratory. This paper proposes a state-input-parameter estimation framework to continuously estimate the vertical ground reaction force waveform during running. By modeling a runner as a single degree of freedom mass-spring-damper with acceleration measurements at the sacrum a state-space formulation can be applied using Newtonian methods. A dual-Kalman filter is employed to estimate the unmeasured system input which feeds through to an unscented Kalman filter to estimate system dynamics and unknown model parameters (e.g. spring stiffness). For validation, 14 subjects performed three one-minute running trials at three different speeds (self-selected slow, comfortable, and fast) on a pressure-sensor-instrumented treadmill. The estimated vertical ground reaction force waveform parameters; peak vertical ground reaction force (RMSE=6.1-7.2%,ρ=0.95-0.97), vertical impulse (RMSE=8.5-13.0%,ρ=0.50-0.60), loading rate (RMSE=24.6-39.4%,ρ=0.85-0.93), and cadence RMSE&lt;1%,ρ=1.00 were compared against the instrumented treadmill measurements. The proposed state-input-parameter estimation framework could monitor personalized vertical ground reaction force metrics for potential biofeedback applications. The feedback mechanism could provide information about the vertical ground reaction force characteristics to the runner as they are running to provide knowledge of both desirable and undesirable loading characteristics experienced.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Biofeedback</subject><subject>Biomechanics</subject><subject>Data integration</subject><subject>Dynamical systems</subject><subject>Feedback</subject><subject>Force plates</subject><subject>Injuries</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Kinematics</subject><subject>Laboratories</subject><subject>Loading rate</subject><subject>Mathematical models</subject><subject>Minimal instrumentation</subject><subject>Optoelectronics</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Running</subject><subject>Sacrum</subject><subject>Sensors</subject><subject>State estimation</subject><subject>Stiffness</subject><subject>System dynamics</subject><subject>Treadmills</subject><subject>Vertical forces</subject><subject>Waveforms</subject><subject>Wearable sensors</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUcluFDEUtBCIDIFfiCxx7sFLr5yIRiQgInGBs-W2X8-46bYHL0R8Dz_Km0zClYstl2qRqwi54mzLGW_fzdt5dGEFc9gKJhBEVLJnZMP7TlZC9uw52TAmeDWIgV2QVynNjLGu7oaX5EJK0XT42pA_u-Cz8yWURCFlt-rsgqdhovsYirc0gjYP0BSiAWpLdH5Pl4CHdSlrj2As3p_Qe5cPzlNNJ3TZF6Br8C6HB8UU9Qr3If54T6_pF72sGi3dkiFWo05gkWthqazOKC_plKiPxxi0ObwmLya9JHjzeF-S7zcfv-0-VXdfbz_vru8qU9d1rqTkAx_GZmjbFowZeN1LGIeOCxBWTroZahhNO474NJNpODST7XsYe90aOdXykrw9-2Lsz4JtqDmU6DFSCeyNSS5bgaz2zDIxpBRhUseItcXfijN12kbN6mkbddpGnbdB4dWjfRlXsP9kT2Mg4cOZAPjJXw6iSsYBFmxdBJOVDe5_GX8B7gangQ</recordid><startdate>20210122</startdate><enddate>20210122</enddate><creator>LeBlanc, Benjamin</creator><creator>Hernandez, Eric M.</creator><creator>McGinnis, Ryan S.</creator><creator>Gurchiek, Reed D.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20210122</creationdate><title>Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach</title><author>LeBlanc, Benjamin ; Hernandez, Eric M. ; McGinnis, Ryan S. ; Gurchiek, Reed D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-331919b59666ecc91483eb9712e2d3fa594ebc6bbe2dcfc51e5fd88eb8a6c3f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Biofeedback</topic><topic>Biomechanics</topic><topic>Data integration</topic><topic>Dynamical systems</topic><topic>Feedback</topic><topic>Force plates</topic><topic>Injuries</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Kinematics</topic><topic>Laboratories</topic><topic>Loading rate</topic><topic>Mathematical models</topic><topic>Minimal instrumentation</topic><topic>Optoelectronics</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Running</topic><topic>Sacrum</topic><topic>Sensors</topic><topic>State estimation</topic><topic>Stiffness</topic><topic>System dynamics</topic><topic>Treadmills</topic><topic>Vertical forces</topic><topic>Waveforms</topic><topic>Wearable sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LeBlanc, Benjamin</creatorcontrib><creatorcontrib>Hernandez, Eric M.</creatorcontrib><creatorcontrib>McGinnis, Ryan S.</creatorcontrib><creatorcontrib>Gurchiek, Reed D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LeBlanc, Benjamin</au><au>Hernandez, Eric M.</au><au>McGinnis, Ryan S.</au><au>Gurchiek, Reed D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2021-01-22</date><risdate>2021</risdate><volume>115</volume><spage>110130</spage><pages>110130-</pages><artnum>110130</artnum><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Estimation of ground reaction forces in runners has been limited to laboratory environments by means of instrumented treadmills, in-ground force plates and optoelectronic systems. Recent advances in estimation techniques using wearable sensors for kinematic analysis and sports performance could enable estimation outside the laboratory. This paper proposes a state-input-parameter estimation framework to continuously estimate the vertical ground reaction force waveform during running. By modeling a runner as a single degree of freedom mass-spring-damper with acceleration measurements at the sacrum a state-space formulation can be applied using Newtonian methods. A dual-Kalman filter is employed to estimate the unmeasured system input which feeds through to an unscented Kalman filter to estimate system dynamics and unknown model parameters (e.g. spring stiffness). For validation, 14 subjects performed three one-minute running trials at three different speeds (self-selected slow, comfortable, and fast) on a pressure-sensor-instrumented treadmill. The estimated vertical ground reaction force waveform parameters; peak vertical ground reaction force (RMSE=6.1-7.2%,ρ=0.95-0.97), vertical impulse (RMSE=8.5-13.0%,ρ=0.50-0.60), loading rate (RMSE=24.6-39.4%,ρ=0.85-0.93), and cadence RMSE&lt;1%,ρ=1.00 were compared against the instrumented treadmill measurements. The proposed state-input-parameter estimation framework could monitor personalized vertical ground reaction force metrics for potential biofeedback applications. The feedback mechanism could provide information about the vertical ground reaction force characteristics to the runner as they are running to provide knowledge of both desirable and undesirable loading characteristics experienced.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>33257007</pmid><doi>10.1016/j.jbiomech.2020.110130</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9290
ispartof Journal of biomechanics, 2021-01, Vol.115, p.110130, Article 110130
issn 0021-9290
1873-2380
language eng
recordid cdi_proquest_journals_2479031362
source Elsevier ScienceDirect Journals; ProQuest Central UK/Ireland
subjects Acceleration
Algorithms
Biofeedback
Biomechanics
Data integration
Dynamical systems
Feedback
Force plates
Injuries
Kalman filter
Kalman filters
Kinematics
Laboratories
Loading rate
Mathematical models
Minimal instrumentation
Optoelectronics
Parameter estimation
Parameter identification
Running
Sacrum
Sensors
State estimation
Stiffness
System dynamics
Treadmills
Vertical forces
Waveforms
Wearable sensors
title Continuous estimation of ground reaction force during long distance running within a fatigue monitoring framework: A Kalman filter-based model-data fusion approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A21%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20estimation%20of%20ground%20reaction%20force%20during%20long%20distance%20running%20within%20a%20fatigue%20monitoring%20framework:%20A%20Kalman%20filter-based%20model-data%20fusion%20approach&rft.jtitle=Journal%20of%20biomechanics&rft.au=LeBlanc,%20Benjamin&rft.date=2021-01-22&rft.volume=115&rft.spage=110130&rft.pages=110130-&rft.artnum=110130&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2020.110130&rft_dat=%3Cproquest_cross%3E2479031362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2479031362&rft_id=info:pmid/33257007&rft_els_id=S0021929020305546&rfr_iscdi=true