Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution
In this paper, we study the controllability of second-order nonlinear stochastic delay systems driven by the Rosenblatt distributions in finite dimensional spaces. A set of sufficient conditions are established for controllability of nonlinear stochastic delay systems using fixed point theory, delay...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 2021-02, Vol.151 (1), p.217-239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 1 |
container_start_page | 217 |
container_title | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics |
container_volume | 151 |
creator | Sathiyaraj, T. Wang, JinRong O'Regan, D. |
description | In this paper, we study the controllability of second-order nonlinear stochastic delay systems driven by the Rosenblatt distributions in finite dimensional spaces. A set of sufficient conditions are established for controllability of nonlinear stochastic delay systems using fixed point theory, delayed sine and cosine matrices and delayed Grammian matrices. Furthermore, controllability results for second-order stochastic delay systems driven by Rosenblatt distributions via the representation of solution by delayed sine and cosine functions are presented. Finally, our theoretical results are illustrated through numerical simulation. |
doi_str_mv | 10.1017/prm.2020.11 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478954139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_prm_2020_11</cupid><sourcerecordid>2478954139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-8f361a935a4b0cbfedb915c08f112460406a8918a554fb8075e6040afdf9f20b3</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgCtbqyT8Q8ChbJ7ub3eQoxS8oCKLnkOwmbcpuUpNU2H9vSgtePA0zPMwwL0K3BBYESPuwC-OihDJ35AzNSN1WRUvK-hzNoAJWlAToJbqKcQsADaPtDK2X3qXgh0EqO9g0YW9wTL7byJhsh513g3VaBuxjZ7NK1q1xrwc54TjFpMeI-2B_tMNqwmmj8YeP2qkME-5tTMGqfbLeXaMLI4eob051jr6enz6Xr8Xq_eVt-bgqupLzVDBTNUTyispaQaeM7hUntANmSP6jgRoayThhktLaKAYt1YehNL3hpgRVzdHdce8u-O-9jkls_T64fFKUdcs4rUnFs7o_qi74GIM2YhfsKMMkCIhDkrkfxSFJQUjWxUnLUQXbr_Xf0v_8L79dd7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478954139</pqid></control><display><type>article</type><title>Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution</title><source>Cambridge University Press Journals Complete</source><creator>Sathiyaraj, T. ; Wang, JinRong ; O'Regan, D.</creator><creatorcontrib>Sathiyaraj, T. ; Wang, JinRong ; O'Regan, D.</creatorcontrib><description>In this paper, we study the controllability of second-order nonlinear stochastic delay systems driven by the Rosenblatt distributions in finite dimensional spaces. A set of sufficient conditions are established for controllability of nonlinear stochastic delay systems using fixed point theory, delayed sine and cosine matrices and delayed Grammian matrices. Furthermore, controllability results for second-order stochastic delay systems driven by Rosenblatt distributions via the representation of solution by delayed sine and cosine functions are presented. Finally, our theoretical results are illustrated through numerical simulation.</description><identifier>ISSN: 0308-2105</identifier><identifier>EISSN: 1473-7124</identifier><identifier>DOI: 10.1017/prm.2020.11</identifier><language>eng</language><publisher>Edinburgh, UK: Royal Society of Edinburgh Scotland Foundation</publisher><subject>Controllability ; Delay ; Nonlinear control ; Trigonometric functions</subject><ispartof>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2021-02, Vol.151 (1), p.217-239</ispartof><rights>Copyright © The Author(s), 2020. The Royal Society of Edinburgh</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-8f361a935a4b0cbfedb915c08f112460406a8918a554fb8075e6040afdf9f20b3</citedby><cites>FETCH-LOGICAL-c299t-8f361a935a4b0cbfedb915c08f112460406a8918a554fb8075e6040afdf9f20b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0308210520000116/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Sathiyaraj, T.</creatorcontrib><creatorcontrib>Wang, JinRong</creatorcontrib><creatorcontrib>O'Regan, D.</creatorcontrib><title>Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution</title><title>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</title><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><description>In this paper, we study the controllability of second-order nonlinear stochastic delay systems driven by the Rosenblatt distributions in finite dimensional spaces. A set of sufficient conditions are established for controllability of nonlinear stochastic delay systems using fixed point theory, delayed sine and cosine matrices and delayed Grammian matrices. Furthermore, controllability results for second-order stochastic delay systems driven by Rosenblatt distributions via the representation of solution by delayed sine and cosine functions are presented. Finally, our theoretical results are illustrated through numerical simulation.</description><subject>Controllability</subject><subject>Delay</subject><subject>Nonlinear control</subject><subject>Trigonometric functions</subject><issn>0308-2105</issn><issn>1473-7124</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpt0E1LAzEQBuAgCtbqyT8Q8ChbJ7ub3eQoxS8oCKLnkOwmbcpuUpNU2H9vSgtePA0zPMwwL0K3BBYESPuwC-OihDJ35AzNSN1WRUvK-hzNoAJWlAToJbqKcQsADaPtDK2X3qXgh0EqO9g0YW9wTL7byJhsh513g3VaBuxjZ7NK1q1xrwc54TjFpMeI-2B_tMNqwmmj8YeP2qkME-5tTMGqfbLeXaMLI4eob051jr6enz6Xr8Xq_eVt-bgqupLzVDBTNUTyispaQaeM7hUntANmSP6jgRoayThhktLaKAYt1YehNL3hpgRVzdHdce8u-O-9jkls_T64fFKUdcs4rUnFs7o_qi74GIM2YhfsKMMkCIhDkrkfxSFJQUjWxUnLUQXbr_Xf0v_8L79dd7g</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Sathiyaraj, T.</creator><creator>Wang, JinRong</creator><creator>O'Regan, D.</creator><general>Royal Society of Edinburgh Scotland Foundation</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202102</creationdate><title>Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution</title><author>Sathiyaraj, T. ; Wang, JinRong ; O'Regan, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-8f361a935a4b0cbfedb915c08f112460406a8918a554fb8075e6040afdf9f20b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Controllability</topic><topic>Delay</topic><topic>Nonlinear control</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathiyaraj, T.</creatorcontrib><creatorcontrib>Wang, JinRong</creatorcontrib><creatorcontrib>O'Regan, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathiyaraj, T.</au><au>Wang, JinRong</au><au>O'Regan, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution</atitle><jtitle>Proceedings of the Royal Society of Edinburgh. Section A. Mathematics</jtitle><addtitle>Proceedings of the Royal Society of Edinburgh: Section A Mathematics</addtitle><date>2021-02</date><risdate>2021</risdate><volume>151</volume><issue>1</issue><spage>217</spage><epage>239</epage><pages>217-239</pages><issn>0308-2105</issn><eissn>1473-7124</eissn><abstract>In this paper, we study the controllability of second-order nonlinear stochastic delay systems driven by the Rosenblatt distributions in finite dimensional spaces. A set of sufficient conditions are established for controllability of nonlinear stochastic delay systems using fixed point theory, delayed sine and cosine matrices and delayed Grammian matrices. Furthermore, controllability results for second-order stochastic delay systems driven by Rosenblatt distributions via the representation of solution by delayed sine and cosine functions are presented. Finally, our theoretical results are illustrated through numerical simulation.</abstract><cop>Edinburgh, UK</cop><pub>Royal Society of Edinburgh Scotland Foundation</pub><doi>10.1017/prm.2020.11</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-2105 |
ispartof | Proceedings of the Royal Society of Edinburgh. Section A. Mathematics, 2021-02, Vol.151 (1), p.217-239 |
issn | 0308-2105 1473-7124 |
language | eng |
recordid | cdi_proquest_journals_2478954139 |
source | Cambridge University Press Journals Complete |
subjects | Controllability Delay Nonlinear control Trigonometric functions |
title | Controllability of stochastic nonlinear oscillating delay systems driven by the Rosenblatt distribution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controllability%20of%20stochastic%20nonlinear%20oscillating%20delay%20systems%20driven%20by%20the%20Rosenblatt%20distribution&rft.jtitle=Proceedings%20of%20the%20Royal%20Society%20of%20Edinburgh.%20Section%20A.%20Mathematics&rft.au=Sathiyaraj,%20T.&rft.date=2021-02&rft.volume=151&rft.issue=1&rft.spage=217&rft.epage=239&rft.pages=217-239&rft.issn=0308-2105&rft.eissn=1473-7124&rft_id=info:doi/10.1017/prm.2020.11&rft_dat=%3Cproquest_cross%3E2478954139%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478954139&rft_id=info:pmid/&rft_cupid=10_1017_prm_2020_11&rfr_iscdi=true |