A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol
Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-par...
Gespeichert in:
Veröffentlicht in: | Powder technology 2020-09, Vol.375, p.453-462 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | |
container_start_page | 453 |
container_title | Powder technology |
container_volume | 375 |
creator | Li, Chenpei Wang, Kai Wang, Yueshe Chen, Yukun Zhang, Chao |
description | Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-particle mass transfer among a particle bulk, a gas-particle interface and the ambient sources, based on Maxwell-Stefan relations and Langmuir adsorption theory. Two kinds of typical aerosol, which are respectively consisted of oxalic acid solution (aqueous solutions) and sucrose solution (easily to form a glassy state in a special condition), are chosen to demonstrate the feasibility of this proposed kinetic model, along with the available experimental data. The results showed that aerosol particles, which could kinetically form amorphous states during evaporation, are limited by the bulk viscosity. In contrast, the bulks consisting of aqueous solutions are controlled by the surface adsorption and desorption of molecules during mass transport.
[Display omitted]
•Model based on Langmuir adsorption model and Maxwell-Stefan relations is proposed.•The particle evolution via mass transfer of gas-particle is dynamically traced.•The main factor of water transport in aerosol is discussed.•Phase state transition on surface affects the particle evolution characteristics. |
doi_str_mv | 10.1016/j.powtec.2020.07.062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478821602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591020306860</els_id><sourcerecordid>2478821602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-fde8222589bce5caaba3adc2979d1282a609c96c81c61bc8f40afb33779f17653</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4CnlsnST9SD8Ky-AULXhS8hTSdamq3qUlW8b-3Sz148jQwvPdm3o-QcwYpA1ZcdunoviKalAOHFMoUCn5AFkyWIhFcvhySBYDgSV4xOCYnIXQAUAgGC6JW9N0OGK2hW9dgT11LX3VIRu2nXY90q0Og0eshtOipHahG74Lrr-hqHHtrdLRuoNHR8U0HpCHqiH9kp-So1X3As9-5JM-3N0_r-2TzePewXm0SI0QWk7ZByTnPZVUbzI3WtRa6Mbwqq4ZxyXUBlakKI5kpWG1km4FuayHKsmpZWeRiSS7m3NG7jx2GqDq388N0UvGslJKzAvikymaVmZ4LHls1ervV_lsxUHuUqlMzSrVHqaBUE8rJdj3bcGrwadGrYCwOBhvr0UTVOPt_wA-BMH9n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478821602</pqid></control><display><type>article</type><title>A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Chenpei ; Wang, Kai ; Wang, Yueshe ; Chen, Yukun ; Zhang, Chao</creator><creatorcontrib>Li, Chenpei ; Wang, Kai ; Wang, Yueshe ; Chen, Yukun ; Zhang, Chao</creatorcontrib><description>Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-particle mass transfer among a particle bulk, a gas-particle interface and the ambient sources, based on Maxwell-Stefan relations and Langmuir adsorption theory. Two kinds of typical aerosol, which are respectively consisted of oxalic acid solution (aqueous solutions) and sucrose solution (easily to form a glassy state in a special condition), are chosen to demonstrate the feasibility of this proposed kinetic model, along with the available experimental data. The results showed that aerosol particles, which could kinetically form amorphous states during evaporation, are limited by the bulk viscosity. In contrast, the bulks consisting of aqueous solutions are controlled by the surface adsorption and desorption of molecules during mass transport.
[Display omitted]
•Model based on Langmuir adsorption model and Maxwell-Stefan relations is proposed.•The particle evolution via mass transfer of gas-particle is dynamically traced.•The main factor of water transport in aerosol is discussed.•Phase state transition on surface affects the particle evolution characteristics.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2020.07.062</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adsorption ; Aerosols ; Air pollution ; Aqueous solutions ; Climate change ; Evaporation ; Health hazards ; Langmuir adsorption theory ; Mass transfer ; Mass transport ; Maxwell-Stefan relations ; Micro-dynamic model ; Oxalic acid ; Particle mass ; Phase state ; Sucrose ; Sugar ; Water transport</subject><ispartof>Powder technology, 2020-09, Vol.375, p.453-462</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 20, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-fde8222589bce5caaba3adc2979d1282a609c96c81c61bc8f40afb33779f17653</citedby><cites>FETCH-LOGICAL-c334t-fde8222589bce5caaba3adc2979d1282a609c96c81c61bc8f40afb33779f17653</cites><orcidid>0000-0003-1767-3175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2020.07.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Chenpei</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wang, Yueshe</creatorcontrib><creatorcontrib>Chen, Yukun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol</title><title>Powder technology</title><description>Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-particle mass transfer among a particle bulk, a gas-particle interface and the ambient sources, based on Maxwell-Stefan relations and Langmuir adsorption theory. Two kinds of typical aerosol, which are respectively consisted of oxalic acid solution (aqueous solutions) and sucrose solution (easily to form a glassy state in a special condition), are chosen to demonstrate the feasibility of this proposed kinetic model, along with the available experimental data. The results showed that aerosol particles, which could kinetically form amorphous states during evaporation, are limited by the bulk viscosity. In contrast, the bulks consisting of aqueous solutions are controlled by the surface adsorption and desorption of molecules during mass transport.
[Display omitted]
•Model based on Langmuir adsorption model and Maxwell-Stefan relations is proposed.•The particle evolution via mass transfer of gas-particle is dynamically traced.•The main factor of water transport in aerosol is discussed.•Phase state transition on surface affects the particle evolution characteristics.</description><subject>Adsorption</subject><subject>Aerosols</subject><subject>Air pollution</subject><subject>Aqueous solutions</subject><subject>Climate change</subject><subject>Evaporation</subject><subject>Health hazards</subject><subject>Langmuir adsorption theory</subject><subject>Mass transfer</subject><subject>Mass transport</subject><subject>Maxwell-Stefan relations</subject><subject>Micro-dynamic model</subject><subject>Oxalic acid</subject><subject>Particle mass</subject><subject>Phase state</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Water transport</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4CnlsnST9SD8Ky-AULXhS8hTSdamq3qUlW8b-3Sz148jQwvPdm3o-QcwYpA1ZcdunoviKalAOHFMoUCn5AFkyWIhFcvhySBYDgSV4xOCYnIXQAUAgGC6JW9N0OGK2hW9dgT11LX3VIRu2nXY90q0Og0eshtOipHahG74Lrr-hqHHtrdLRuoNHR8U0HpCHqiH9kp-So1X3As9-5JM-3N0_r-2TzePewXm0SI0QWk7ZByTnPZVUbzI3WtRa6Mbwqq4ZxyXUBlakKI5kpWG1km4FuayHKsmpZWeRiSS7m3NG7jx2GqDq388N0UvGslJKzAvikymaVmZ4LHls1ervV_lsxUHuUqlMzSrVHqaBUE8rJdj3bcGrwadGrYCwOBhvr0UTVOPt_wA-BMH9n</recordid><startdate>20200920</startdate><enddate>20200920</enddate><creator>Li, Chenpei</creator><creator>Wang, Kai</creator><creator>Wang, Yueshe</creator><creator>Chen, Yukun</creator><creator>Zhang, Chao</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1767-3175</orcidid></search><sort><creationdate>20200920</creationdate><title>A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol</title><author>Li, Chenpei ; Wang, Kai ; Wang, Yueshe ; Chen, Yukun ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-fde8222589bce5caaba3adc2979d1282a609c96c81c61bc8f40afb33779f17653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aerosols</topic><topic>Air pollution</topic><topic>Aqueous solutions</topic><topic>Climate change</topic><topic>Evaporation</topic><topic>Health hazards</topic><topic>Langmuir adsorption theory</topic><topic>Mass transfer</topic><topic>Mass transport</topic><topic>Maxwell-Stefan relations</topic><topic>Micro-dynamic model</topic><topic>Oxalic acid</topic><topic>Particle mass</topic><topic>Phase state</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chenpei</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wang, Yueshe</creatorcontrib><creatorcontrib>Chen, Yukun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chenpei</au><au>Wang, Kai</au><au>Wang, Yueshe</au><au>Chen, Yukun</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol</atitle><jtitle>Powder technology</jtitle><date>2020-09-20</date><risdate>2020</risdate><volume>375</volume><spage>453</spage><epage>462</epage><pages>453-462</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-particle mass transfer among a particle bulk, a gas-particle interface and the ambient sources, based on Maxwell-Stefan relations and Langmuir adsorption theory. Two kinds of typical aerosol, which are respectively consisted of oxalic acid solution (aqueous solutions) and sucrose solution (easily to form a glassy state in a special condition), are chosen to demonstrate the feasibility of this proposed kinetic model, along with the available experimental data. The results showed that aerosol particles, which could kinetically form amorphous states during evaporation, are limited by the bulk viscosity. In contrast, the bulks consisting of aqueous solutions are controlled by the surface adsorption and desorption of molecules during mass transport.
[Display omitted]
•Model based on Langmuir adsorption model and Maxwell-Stefan relations is proposed.•The particle evolution via mass transfer of gas-particle is dynamically traced.•The main factor of water transport in aerosol is discussed.•Phase state transition on surface affects the particle evolution characteristics.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2020.07.062</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1767-3175</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5910 |
ispartof | Powder technology, 2020-09, Vol.375, p.453-462 |
issn | 0032-5910 1873-328X |
language | eng |
recordid | cdi_proquest_journals_2478821602 |
source | Access via ScienceDirect (Elsevier) |
subjects | Adsorption Aerosols Air pollution Aqueous solutions Climate change Evaporation Health hazards Langmuir adsorption theory Mass transfer Mass transport Maxwell-Stefan relations Micro-dynamic model Oxalic acid Particle mass Phase state Sucrose Sugar Water transport |
title | A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20kinetic%20model%20of%20gas-particle%20mass%20transfer%20in%20aerosol:%20Application%20to%20phase%20state%20in%20aerosol&rft.jtitle=Powder%20technology&rft.au=Li,%20Chenpei&rft.date=2020-09-20&rft.volume=375&rft.spage=453&rft.epage=462&rft.pages=453-462&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2020.07.062&rft_dat=%3Cproquest_cross%3E2478821602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478821602&rft_id=info:pmid/&rft_els_id=S0032591020306860&rfr_iscdi=true |