A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol

Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-par...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2020-09, Vol.375, p.453-462
Hauptverfasser: Li, Chenpei, Wang, Kai, Wang, Yueshe, Chen, Yukun, Zhang, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue
container_start_page 453
container_title Powder technology
container_volume 375
creator Li, Chenpei
Wang, Kai
Wang, Yueshe
Chen, Yukun
Zhang, Chao
description Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-particle mass transfer among a particle bulk, a gas-particle interface and the ambient sources, based on Maxwell-Stefan relations and Langmuir adsorption theory. Two kinds of typical aerosol, which are respectively consisted of oxalic acid solution (aqueous solutions) and sucrose solution (easily to form a glassy state in a special condition), are chosen to demonstrate the feasibility of this proposed kinetic model, along with the available experimental data. The results showed that aerosol particles, which could kinetically form amorphous states during evaporation, are limited by the bulk viscosity. In contrast, the bulks consisting of aqueous solutions are controlled by the surface adsorption and desorption of molecules during mass transport. [Display omitted] •Model based on Langmuir adsorption model and Maxwell-Stefan relations is proposed.•The particle evolution via mass transfer of gas-particle is dynamically traced.•The main factor of water transport in aerosol is discussed.•Phase state transition on surface affects the particle evolution characteristics.
doi_str_mv 10.1016/j.powtec.2020.07.062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2478821602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591020306860</els_id><sourcerecordid>2478821602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-fde8222589bce5caaba3adc2979d1282a609c96c81c61bc8f40afb33779f17653</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4CnlsnST9SD8Ky-AULXhS8hTSdamq3qUlW8b-3Sz148jQwvPdm3o-QcwYpA1ZcdunoviKalAOHFMoUCn5AFkyWIhFcvhySBYDgSV4xOCYnIXQAUAgGC6JW9N0OGK2hW9dgT11LX3VIRu2nXY90q0Og0eshtOipHahG74Lrr-hqHHtrdLRuoNHR8U0HpCHqiH9kp-So1X3As9-5JM-3N0_r-2TzePewXm0SI0QWk7ZByTnPZVUbzI3WtRa6Mbwqq4ZxyXUBlakKI5kpWG1km4FuayHKsmpZWeRiSS7m3NG7jx2GqDq388N0UvGslJKzAvikymaVmZ4LHls1ervV_lsxUHuUqlMzSrVHqaBUE8rJdj3bcGrwadGrYCwOBhvr0UTVOPt_wA-BMH9n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478821602</pqid></control><display><type>article</type><title>A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol</title><source>Access via ScienceDirect (Elsevier)</source><creator>Li, Chenpei ; Wang, Kai ; Wang, Yueshe ; Chen, Yukun ; Zhang, Chao</creator><creatorcontrib>Li, Chenpei ; Wang, Kai ; Wang, Yueshe ; Chen, Yukun ; Zhang, Chao</creatorcontrib><description>Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-particle mass transfer among a particle bulk, a gas-particle interface and the ambient sources, based on Maxwell-Stefan relations and Langmuir adsorption theory. Two kinds of typical aerosol, which are respectively consisted of oxalic acid solution (aqueous solutions) and sucrose solution (easily to form a glassy state in a special condition), are chosen to demonstrate the feasibility of this proposed kinetic model, along with the available experimental data. The results showed that aerosol particles, which could kinetically form amorphous states during evaporation, are limited by the bulk viscosity. In contrast, the bulks consisting of aqueous solutions are controlled by the surface adsorption and desorption of molecules during mass transport. [Display omitted] •Model based on Langmuir adsorption model and Maxwell-Stefan relations is proposed.•The particle evolution via mass transfer of gas-particle is dynamically traced.•The main factor of water transport in aerosol is discussed.•Phase state transition on surface affects the particle evolution characteristics.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2020.07.062</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Adsorption ; Aerosols ; Air pollution ; Aqueous solutions ; Climate change ; Evaporation ; Health hazards ; Langmuir adsorption theory ; Mass transfer ; Mass transport ; Maxwell-Stefan relations ; Micro-dynamic model ; Oxalic acid ; Particle mass ; Phase state ; Sucrose ; Sugar ; Water transport</subject><ispartof>Powder technology, 2020-09, Vol.375, p.453-462</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 20, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-fde8222589bce5caaba3adc2979d1282a609c96c81c61bc8f40afb33779f17653</citedby><cites>FETCH-LOGICAL-c334t-fde8222589bce5caaba3adc2979d1282a609c96c81c61bc8f40afb33779f17653</cites><orcidid>0000-0003-1767-3175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.powtec.2020.07.062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Li, Chenpei</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wang, Yueshe</creatorcontrib><creatorcontrib>Chen, Yukun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><title>A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol</title><title>Powder technology</title><description>Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-particle mass transfer among a particle bulk, a gas-particle interface and the ambient sources, based on Maxwell-Stefan relations and Langmuir adsorption theory. Two kinds of typical aerosol, which are respectively consisted of oxalic acid solution (aqueous solutions) and sucrose solution (easily to form a glassy state in a special condition), are chosen to demonstrate the feasibility of this proposed kinetic model, along with the available experimental data. The results showed that aerosol particles, which could kinetically form amorphous states during evaporation, are limited by the bulk viscosity. In contrast, the bulks consisting of aqueous solutions are controlled by the surface adsorption and desorption of molecules during mass transport. [Display omitted] •Model based on Langmuir adsorption model and Maxwell-Stefan relations is proposed.•The particle evolution via mass transfer of gas-particle is dynamically traced.•The main factor of water transport in aerosol is discussed.•Phase state transition on surface affects the particle evolution characteristics.</description><subject>Adsorption</subject><subject>Aerosols</subject><subject>Air pollution</subject><subject>Aqueous solutions</subject><subject>Climate change</subject><subject>Evaporation</subject><subject>Health hazards</subject><subject>Langmuir adsorption theory</subject><subject>Mass transfer</subject><subject>Mass transport</subject><subject>Maxwell-Stefan relations</subject><subject>Micro-dynamic model</subject><subject>Oxalic acid</subject><subject>Particle mass</subject><subject>Phase state</subject><subject>Sucrose</subject><subject>Sugar</subject><subject>Water transport</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4CnlsnST9SD8Ky-AULXhS8hTSdamq3qUlW8b-3Sz148jQwvPdm3o-QcwYpA1ZcdunoviKalAOHFMoUCn5AFkyWIhFcvhySBYDgSV4xOCYnIXQAUAgGC6JW9N0OGK2hW9dgT11LX3VIRu2nXY90q0Og0eshtOipHahG74Lrr-hqHHtrdLRuoNHR8U0HpCHqiH9kp-So1X3As9-5JM-3N0_r-2TzePewXm0SI0QWk7ZByTnPZVUbzI3WtRa6Mbwqq4ZxyXUBlakKI5kpWG1km4FuayHKsmpZWeRiSS7m3NG7jx2GqDq388N0UvGslJKzAvikymaVmZ4LHls1ervV_lsxUHuUqlMzSrVHqaBUE8rJdj3bcGrwadGrYCwOBhvr0UTVOPt_wA-BMH9n</recordid><startdate>20200920</startdate><enddate>20200920</enddate><creator>Li, Chenpei</creator><creator>Wang, Kai</creator><creator>Wang, Yueshe</creator><creator>Chen, Yukun</creator><creator>Zhang, Chao</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1767-3175</orcidid></search><sort><creationdate>20200920</creationdate><title>A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol</title><author>Li, Chenpei ; Wang, Kai ; Wang, Yueshe ; Chen, Yukun ; Zhang, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-fde8222589bce5caaba3adc2979d1282a609c96c81c61bc8f40afb33779f17653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Aerosols</topic><topic>Air pollution</topic><topic>Aqueous solutions</topic><topic>Climate change</topic><topic>Evaporation</topic><topic>Health hazards</topic><topic>Langmuir adsorption theory</topic><topic>Mass transfer</topic><topic>Mass transport</topic><topic>Maxwell-Stefan relations</topic><topic>Micro-dynamic model</topic><topic>Oxalic acid</topic><topic>Particle mass</topic><topic>Phase state</topic><topic>Sucrose</topic><topic>Sugar</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chenpei</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Wang, Yueshe</creatorcontrib><creatorcontrib>Chen, Yukun</creatorcontrib><creatorcontrib>Zhang, Chao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chenpei</au><au>Wang, Kai</au><au>Wang, Yueshe</au><au>Chen, Yukun</au><au>Zhang, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol</atitle><jtitle>Powder technology</jtitle><date>2020-09-20</date><risdate>2020</risdate><volume>375</volume><spage>453</spage><epage>462</epage><pages>453-462</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><abstract>Aerosol plays a vital role in atmosphere pollution, climate change, and health hazard. The mass transfer process between the aerosol particles and their ambient gas critically affects the evolution of aerosol particles and their phase states. A novel kinetic model is proposed to describe the gas-particle mass transfer among a particle bulk, a gas-particle interface and the ambient sources, based on Maxwell-Stefan relations and Langmuir adsorption theory. Two kinds of typical aerosol, which are respectively consisted of oxalic acid solution (aqueous solutions) and sucrose solution (easily to form a glassy state in a special condition), are chosen to demonstrate the feasibility of this proposed kinetic model, along with the available experimental data. The results showed that aerosol particles, which could kinetically form amorphous states during evaporation, are limited by the bulk viscosity. In contrast, the bulks consisting of aqueous solutions are controlled by the surface adsorption and desorption of molecules during mass transport. [Display omitted] •Model based on Langmuir adsorption model and Maxwell-Stefan relations is proposed.•The particle evolution via mass transfer of gas-particle is dynamically traced.•The main factor of water transport in aerosol is discussed.•Phase state transition on surface affects the particle evolution characteristics.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2020.07.062</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1767-3175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2020-09, Vol.375, p.453-462
issn 0032-5910
1873-328X
language eng
recordid cdi_proquest_journals_2478821602
source Access via ScienceDirect (Elsevier)
subjects Adsorption
Aerosols
Air pollution
Aqueous solutions
Climate change
Evaporation
Health hazards
Langmuir adsorption theory
Mass transfer
Mass transport
Maxwell-Stefan relations
Micro-dynamic model
Oxalic acid
Particle mass
Phase state
Sucrose
Sugar
Water transport
title A kinetic model of gas-particle mass transfer in aerosol: Application to phase state in aerosol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20kinetic%20model%20of%20gas-particle%20mass%20transfer%20in%20aerosol:%20Application%20to%20phase%20state%20in%20aerosol&rft.jtitle=Powder%20technology&rft.au=Li,%20Chenpei&rft.date=2020-09-20&rft.volume=375&rft.spage=453&rft.epage=462&rft.pages=453-462&rft.issn=0032-5910&rft.eissn=1873-328X&rft_id=info:doi/10.1016/j.powtec.2020.07.062&rft_dat=%3Cproquest_cross%3E2478821602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478821602&rft_id=info:pmid/&rft_els_id=S0032591020306860&rfr_iscdi=true